The Honorable John T. Conway
Chairman
Defense Nuclear Facilities Safety Board
625 Indiana Avenue, NW
Suite 700
Washington, D.C. 20004

Dear Mr. Chairman:

Enclosed is Revision 3 of the Department's Implementation Plan for remediating the nuclear materials identified in Recommendations 94-1 and 2000-1. This revision describes the current status of, and changes to, the Department's plans for stabilizing the nuclear materials, with significant changes included for the Hanford Spent Nuclear Fuel Project, Savannah River Site, Rocky Flats Environmental Technology Site, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory. These plans and any changes to previous commitments have been discussed with members of your staff.

The enclosed plan includes discussion of all of the actions taken to date to address the urgent safety issues described in the original Recommendation 94-1. It also sets forth the Department's plans and commitments for the remaining stabilization activities called for in Recommendation 2000-1. Accordingly, the Department proposes closure of Recommendation 94-1 as we continue to track our stabilization activities under Recommendation 2000-1.

The Department is currently working closely with the Los Alamos National Laboratory to establish a satisfactory path forward for stabilization of its remaining 94-1 legacy inventory. Los Alamos completed stabilization of all of their high-risk vault items in July 1998, and stabilization of the remaining 17 priority items stored in gloveboxes is being actively pursued. Five interim commitments have been established to monitor the preparation of an integrated plan with milestones for the stabilization and discard of those items and all remaining 94-1 legacy material at Los Alamos. This plan will be available by October 31, 2000.

The Department acknowledges that the enclosed revision reflects significant delays to some of our previously approved stabilization commitments, particularly in the area of stabilization activities at the Savannah River Site. As I described in my March 13, 2000, response to your Recommendation 2000-1, these delays result from a variety of interrelated factors that include funding priorities as well as technical and management issues. In developing this plan revision, however, we have been careful to order the activities with the objective of achieving early risk reduction. We recognize the importance of these projects and will work to maximize our efficiency and attain every possible schedule acceleration.
We continue to closely track progress on all stabilization commitments and are pleased to be able to continue to show measurable progress at several sites. Of note is the completion of all remaining 94-1 activities at the Idaho National Engineering and Environmental Laboratory. We will keep you and your staff apprised of our progress in meeting the commitments at the remaining six sites. If you have any questions, please contact me or have your staff contact Mr. David Huizenga at (202) 586-5151.

Yours sincerely,

Bill Richardson

Enclosure
Implementation Plan for the Remediation of Nuclear Materials in the Defense Nuclear Facilities Complex
(Revision 3)

May 31, 2000
EXECUTIVE SUMMARY ... iv

1.0 BACKGROUND ... 1-1

2.0 UNDERLYING CAUSES .. 2-1

3.0 BASELINE ASSUMPTIONS ... 3-1

4.0 SUMMARY OF COMPLETED ACTIONS 4-1
 4.1 Safety Issue Resolution .. 4-3
 4.1.1 Department’s Analysis of the Safety Issues Described within the
 Board’s Recommendation ... 4-3
 4.1.2 Plutonium Stabilization and Storage Standard 4-3
 4.2 Site-specific Risk Issue Management Activities 4-4
 4.2.1 Hanford .. 4-4
 4.2.2 Savannah River Site ... 4-14
 4.2.3 Rocky Flats ... 4-22
 4.2.4 Oak Ridge .. 4-28
 4.2.5 Los Alamos National Laboratory 4-29
 4.2.6 Lawrence Livermore National Laboratory 4-30
 4.2.7 Idaho .. 4-30

5.0 REMAINING STABILIZATION ACTIVITIES 5-1
 5.1 Inventory Summaries .. 5-1
 5.1.1 Plutonium Solutions ... 5-1
 5.1.2 Plutonium Metals and Oxides 5-3
 5.1.3 Plutonium Residues and Mixed Oxides (<50% assay) 5-6
 5.1.4 Special Isotopes .. 5-8
 5.1.5 Highly-enriched Uranium Stabilization Requirements 5-9
 5.1.6 Spent Nuclear Fuel .. 5-10
 5.2 Site Safety Issue Resolution Approaches 5-11
 5.2.1 Hanford .. 5-11
 5.2.2 Savannah River Site ... 5-19
 5.4.3 Rocky Flats ... 5-28
 5.4.4 Oak Ridge .. 5-34
 5.2.5 Los Alamos National Laboratory 5-36
 5.4.6 Lawrence Livermore National Laboratory 5-41
 5.4.7 Idaho National Engineering and Environmental Laboratory .. 5-43

6.0 ORGANIZATION AND MANAGEMENT 6-1
EXECUTIVE SUMMARY

The Defense Nuclear Facilities Safety Board ("DNFSB" or "Board") issued Recommendation 94-1 on May 26, 1994. In Recommendation 94-1 the Board noted its concern that the halt in production of materials to be used in nuclear weapons froze the manufacturing pipeline in a state that, for safety reasons, should not be allowed to persist unremediated. Specifically, the Board expressed concern about certain liquids and solids containing fissile materials and other radioactive materials in spent fuel storage pools, reactor basins, reprocessing canyons, and various other facilities once used for processing and weapons manufacture. The Department of Energy ("DOE" or "the Department") accepted the Board’s Recommendation on August 31, 1994, and submitted its initial implementation plan on February 28, 1995.

In December 1997, the Board called upon the Department to prepare a comprehensive revision to the 94-1 Implementation Plan. Revision 1 of the Implementation Plan was approved by the Secretary of Energy in December 1998. The Board only conditionally accepted Revision 1, citing uncertainties about the Department’s path forward for plutonium stabilization and storage in light of a hold that had been placed on construction of the Actinide Packaging and Storage Facility at Savannah River Site. The issues which led to the reconsideration of the APSF strategy have been carefully reviewed, and those issues are described in the Department’s Integrated Nuclear Materials Management Plan.

Also, since 1998 an intensive rebaselining effort had been underway for stabilization activities at the Hanford Plutonium Finishing Plant. The results of that rebaselining were reflected in Revision 2 of the 94-1 Implementation Plan, which was issued on February 1, 2000.

Meanwhile, on January 14, 2000, the Board sent its Recommendation 2000-1 to DOE, re-iterating the urgency of completing the stabilization activities which had already been committed to under Recommendation 94-1. The Department continues to share the Board’s concerns regarding nuclear materials stabilization and has accepted most aspects of Recommendation 2000-1. The urgent safety issues described in the original Recommendation 94-1 have either been corrected or had compensatory measures put in place to protect workers and the public until stabilization can be completed. Accordingly, it is the Department’s intent that Recommendation 94-1 be closed and that the remaining stabilization activities be tracked under Recommendation 2000-1.

Specifically, this 2000-1 Implementation Plan reflects the decisions made regarding the path forward for completing stabilization of nuclear materials at the Savannah River Site. It also includes updated plans for some of the materials at Hanford, Rocky Flats, Los Alamos National Laboratory and Lawrence Livermore National Laboratory.

The measures outlined in this plan to stabilize nuclear materials constitute an important part of an integrated management process to address these issues. In accordance with the first principle in Integrated Safety Management, DOE realigned its management organization for the 94-1 effort in December 1998. The Assistant Secretary for Environmental Management (EM-1) is the lead Program Secretarial Official (PSO) for the Department for Recommendations 94-1 and 2000-1 since most of the nuclear materials stabilization activities are under her purview. The Responsible Manager (RM) is the Deputy Assistant Secretary for Integration and Disposition, who has responsibility to perform all associated planning, response, and implementation activities. A member of the Office of Nuclear Materials and Spent Fuel (EM-21) is assigned as the Recommendation 2000-1 Implementation Plan Manager (IPM). The Responsible Manager and the Implementation Plan Manager will work with appropriate managers from the Offices of Defense Programs (DP) and Environmental
Management (EM) to ensure that stabilization activities at DP and EM sites are completed in a safe and timely manner.

The Responsible Manager is supported by a 2000-1 Management Team, consisting of representatives from each of the Program Offices at Headquarters that have 2000-1 related stabilization activities at Field locations under their cognizance. The Offices of Fissile Materials Disposition (NN-60); Environment, Safety and Health (EH); Departmental Representative to the Board; and EM’s Office of Science and Technology are also represented on the 2000-1 Management Team. It is important to note that, although the DP and NN-60 organizations have recently been reorganized as part of the new National Nuclear Security Administration, their representation and responsibilities with respect to DNFSB responses has not changed. The 2000-1 Management Team integrates activities across the sites and the material categories, managing interfaces among utilization, stabilization and disposition programs. The team is also working to make the most efficient use of the complex’s facilities, examine methods and alternatives for improving practices and schedules as this effort continues, and evaluate the status of the Department’s progress in meeting the Secretarial commitments contained in this Implementation Plan.

DOE has made progress in stabilizing nuclear materials for long term storage, ready for disposition. For example; 87% of all Pu solutions, 47% of residues and mixed oxides, 39% of special isotopes, 18% of uranium solids and 7% of spent nuclear fuel have been stabilized. The remaining material stabilization actions that must be completed are summarized below, along with an indication of any change from the commitments stated in the 94-1 Implementation Plan Revision 2. A complete description of these activities for each site is found in the implementation plan body, and a crosswalk of the remaining commitments and their revised due dates is located in Appendix D. Integrated safety management systems are either in place or being implemented at these sites to ensure continued safe storage and stabilization of nuclear materials.

Remaining Actions Under Recommendations 94-1 and 2000-1

For the purposes of this Implementation Plan, the Department defines closure of the actions related to Recommendations 94-1 and 2000-1 as follows:

- All 94-1 plutonium metal and oxide is packaged according to the long-term storage standard.
- All 94-1 special isotope materials are in a form suitable for long-term storage.
- All 94-1 spent nuclear fuel is stabilized by dissolution or transferred to appropriate storage.
- All 94-1 uranium is in a form suitable for long-term storage.
- All 94-1 low assay materials are packaged in accordance with the Interim Safe Storage Criteria.

Chapter 4 of the Implementation Plan text describes those actions which have been completed to eliminate the urgent risks discussed in Recommendation 94-1, and to put in place compensatory measures to ensure the safety of workers and the public until all stabilization activities are complete. Chapter 5 describes the remaining scope of materials and schedule (summarized below) for completing all of the stabilization activities discussed in Recommendation 2000-1.

Hanford (changes relative to 94-1 IP Rev. 2, February 2000)

- All plutonium solutions will be stabilized by December 2001
- All plutonium metal will be packaged to conform to DOE-STD-3013-99 by March 2001
- All plutonium oxide will be packaged to conform to DOE-STD-3013-99 by May 2004
• Aluminum alloys will be sent to SRS for canyon processing or packaged for disposition to WIPP, and the remaining alloys will be brushed and packaged at PFP by June 2001
• All residues <30% plutonium will be stabilized by April 2004
• All plutonium polycubes will be stabilized by August 2002
• All spent nuclear fuel and sludge will be removed from the K-Basins by August 2004 (12 months earlier)

Savannah River *(changes relative to 94-1 IP Revision 1, December 1998)*
• All pre-existing plutonium solutions will be stabilized by December 2002 (six months later)
• All pre-existing metal and oxide >30% plutonium will be packaged to conform to DOE-STD-3013-99 by June 2008 *(up to six year delay)*
• All residues <30% plutonium will be stabilized by June 2008 *(three years and nine months later)*
• All americium/curium solutions will be stabilized by December 2005 *(three years and three months later)*
• All neptunium solutions will be stabilized by December 2006 *(one year delay)*
• All Mark 16 and Mark 22 spent nuclear fuel will be dissolved by March 2004 *(27-month delay)*
• All uranium solutions will be dispositioned by September 2005 *(21 months later)*
(Note: SRS schedules are contingent upon approval of an FY 2001 budget realignment. See section 5.2.2)

Rocky Flats
• All piping systems will be drained and the plutonium solutions stabilized by March 2002
• All metal and oxide >30% plutonium will be packaged to conform to DOE-STD-3013-99 by May 2002
• All remaining residues will be packaged for off-site shipment by May 2002

Oak Ridge
• All plutonium will be packaged and shipped off-site by May 2002
• All uranium-233 will be removed from the Molten Salt Reactor Experiment by May 2002

Los Alamos National Laboratory
• All legacy metal and oxide will be inspected and repackaged by TBD
• All legacy residues will be stabilized and the plutonium recovered as oxide by TBD

Lawrence Livermore National Laboratory *(changes relative to 94-1 IP Rev. 2, February 2000)*
• Complete plutonium metal and oxide repackaging to conform to DOE-STD-3013-99 by May 2002
• Stabilize and package LLNL’s ash residues to conform to DOE-STD-3013-99 by May 2002
• Stabilize and package all other LLNL residues to conform to DOE-STD-3013-99 by May 2002 *(15 month delay)*

1. Legacy materials are those with a creation date before May 1994.
2. As discussed in Chapter 5, a revised schedule for stabilization of LANL materials will be submitted by October 31, 2000.
This page intentionally left blank.
1.0 BACKGROUND

The Defense Nuclear Facilities Safety Board (DNFSB or Board) issued Recommendation 94-1 on May 26, 1994. The Department of Energy (DOE or the Department) accepted the Board's Recommendation on August 31, 1994, and submitted its implementation plan on February 28, 1995. The Board noted, in Recommendation 94-1, that it was concerned that the halt in production of materials to be used in nuclear weapons froze the manufacturing pipeline in a state that, for safety reasons, should not be allowed to persist unremediated. Specifically, the Board expressed concern about certain liquids and solids containing fissile materials and other radioactive materials in spent fuel storage pools, reactor basins, reprocessing canyons, and various other facilities once used for processing and weapons manufacture. On January 14, 2000, the Board issued its Recommendation 2000-1, which dealt with the same technical issues as 94-1. In Recommendation 2000-1, the Board expressed its concern that remediation activities were not being accomplished on the schedules originally agreed to, nor was there the same sense of urgency that had originally been their intent with 94-1. The Department acknowledges and continues to share the Board's concerns and has developed this third revision to the original integrated program plan for 94-1 to continue to address these urgent problems. It is also the Department's intent that this document serve as the 2000-1 Implementation Plan.

At about the same time as the Board's Recommendation 94-1, the Department of Energy (DOE) initiated activities to investigate the conditions of nuclear materials within the Department. Working groups were established to visit sites and assess the status of specific categories of nuclear material. The following reports provided a detailed description of the amount, location, condition and vulnerabilities associated with much of this material:

- Spent Fuel Working Group Report on Inventory and Storage of the Department’s Spent Nuclear Fuel and Other Reactor Irradiated Nuclear Materials and Their Environmental, Safety, and Health Vulnerabilities (November 1993)
- Plutonium Working Group Report on Environmental, Safety and Health Vulnerabilities Associated with the Department’s Plutonium Storage (November 1994)

The Spent Fuel Working Group Report identified significant vulnerabilities causing the Department to study alternative programmatic solutions. In addition, and as a result of a court order (Civil No. 91-0035-S-HLR, 6/28/93), the Department prepared the Programmatic Spent Nuclear Fuel Environmental Impact Statement. The final statement was issued in April 1995, with a Record of Decision on June 1, 1995.

The Departmental assessments identified above and the independent observations and concerns expressed by the Board made the following issues clear:

- There is an urgent requirement to address the growing technical problems associated with handling, stabilizing and storing excess nuclear material. These problems are especially noteworthy because the recent downsizing of the weapons complex has resulted in the loss, without replacement, of many of the skilled workers needed to correct the problems. This decreasing experience base, coupled with the
increasing age of the facilities, makes the control of nuclear material and the prevention of inadvertent criticality events, uncontrolled exposure, and personnel contamination a continuing concern.

- The efforts to stabilize nuclear materials were heretofore limited to those undertaken by individual field organizations and constrained by each site's resources. Consequently, the stabilization of nuclear materials was pursued with different priorities, assets and treatment techniques. Several mutually exclusive and, in some cases, duplicative programs evolved. Without a Departmental perspective, some options for solving the problem were not adequately assessed (e.g., transporting all material of a certain type to one site for processing, versus processing material at multiple sites).

The Department initially broadened the scope of the response to Recommendation 94-1 to include additional bulk liquids and solids containing fissile materials and other radioactive substances in spent fuel storage pools, reactor basins, reprocessing canyons, processing lines and various facilities which require conversion to forms, or establishing conditions, suitable for safe interim storage. The scope was broadened to ensure that similar materials under similar conditions receive the same degree of management attention as those noted by the Board in its Recommendation.

Much progress has been made to address the concerns specified in the Department's vulnerability reports and the Board's Recommendation 94-1. This Implementation Plan revision provides an update on the completed actions from the original 94-1 plan, the December 1998 Revision 1, and the February 2000 Revision 2. Chapter 4 of the Implementation Plan text describes those actions which have been completed to eliminate the urgent risks discussed in Recommendation 94-1, and to put in place compensatory measures to ensure the safety of workers and the public until all stabilization activities are complete. Chapter 5 describes the remaining scope of materials and schedule (summarized below) for completing all of the stabilization activities discussed in Recommendation 2000-1.
2.0 UNDERLYING CAUSES

Throughout the Cold War, the Department of Energy was responsible for the development, manufacturing, maintenance, and testing of the United States' arsenal of nuclear weapons. At the conclusion of the Cold War, a majority of the Department's facilities that performed the various elements of work necessary to produce these nuclear weapons had been shutdown for various safety reasons with the expectation that they would be required to resume production within a relatively short time. Subsequently, world events have been such that the shutdown facilities have not resumed production and, as a consequence, the Department has shifted its emphasis from nuclear material production to environmental management to mitigate the risks caused by chemical and nuclear instability of the materials remaining in the facilities.

When nuclear weapons were being produced and the stockpile was growing, the vast majority of fissile material scrap and materials from retired weapons was recycled. It was less costly to recover fissile materials from high assay scrap and retired weapons than to produce new material. As a result, very little scrap containing fissile material was considered surplus. Consequently, these materials were designated, handled, and packaged for short-term storage; therefore, when the weapon production lines were halted in the late 1980s and early 1990s, many materials were left in conditions unsuitable for long-term storage.

In early 1994, the Board issued its Recommendation 94-1, which expressed the Board's dissatisfaction with the slow pace of actions being taken to correct the conditions brought to light during the plutonium and spent fuel assessments. In response, in February 1995 the Department issued its Recommendation 94-1 Implementation Plan. The Plan represented an integrated Department-wide program to provide timely mitigation of those conditions identified in the vulnerability assessments which presented the highest risks to worker, facility, and environment. For example:

- The by-products left from the processing of plutonium into weapons-grade components left a large legacy of deteriorating plutonium residues, metal and oxides in both solution and solid form at several facilities such as Hanford, Rocky Flats, and Savannah River. These materials require timely stabilization and repackaging to prevent further deterioration of conditions and a corresponding increase in the already unacceptable safety risks.

- The production and processing of plutonium and other nuclear materials at Hanford, the Idaho National Engineering and Environmental Laboratory, and Savannah River left a large legacy of spent nuclear fuel in storage pools. Both the fuel and the sludge emanating from the deteriorating fuel have become a significant environmental threat that mandates timely action to prevent further increase in the associated risks.

- To provide suitable fuel for reactors used to produce the plutonium that was turned into metal weapons components required processing natural uranium to produce enriched uranium. The by-products of this process continue to contaminate major facilities at both Oak Ridge and Savannah River. The risks associated with the highest risk solid deposits of uranium isotopes in an uranium enrichment facility at Oak Ridge have been mitigated, however, cleanup of a shutdown experimental production reactor at that site continues to require attention. Savannah River has a large quantity of a uranium solution stored in its H-Canyon that is both a chemical and a radiological hazard that requires timely mitigation.
The process of producing and purifying nuclear materials at Savannah River left a particularly hazardous inventory of special isotopes in both solution and solid forms that present significant safety risks.

A number of modifications to the 94-1 Implementation Plan have become necessary since it was originally promulgated. These modifications are due to approval of major Departmental initiatives such as:

- **Accelerating Cleanup: Paths to Closure**, which describes the Department's plans to accelerate closure of facilities and sites under the auspices of the Office of Environmental Management
- **The Rocky Flats Closure Project Management Plan**, which outlines specific actions the Department is taking to accelerate the cleanup and closure of Rocky Flats
- The Record of Decision (ROD) for the **Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic Environmental Impact Statement** regarding storage of surplus weapons-usable plutonium and highly-enriched uranium (HEU) pending disposition, and the strategy for disposition of plutonium
- The ROD for the Programmatic Environmental Impact Statement for **Stockpile Stewardship and Management** within the Office of Defense Programs which assigned new missions to some DP facilities

Modifications have also been necessitated by technical improvements, previously unforeseen problems, and schedule changes that have been encountered as stabilization and repackaging progressed at various sites. In December 1997 the Board called on the Department to prepare a comprehensive revision to the 94-1 Implementation Plan to capture all known and planned changes from the original Plan. Revision 1 of the Implementation Plan was approved by the Secretary of Energy in December 1998. The Board only conditionally accepted Revision 1 of the Implementation Plan, citing uncertainties about the Department's path forward for plutonium stabilization and storage in light of the hold that had been placed on construction of the Actinide Packaging and Storage Facility at Savannah River Site.

In addition, as Revision 1 was being prepared, an intensive rebaselining effort was underway for stabilization activities at the Hanford Plutonium Finishing Plant. The results of that rebaselining were reflected in Revision 2, approved on February 1, 2000, which also included updated plans for Rocky Flats, Oak Ridge, Lawrence Livermore National Laboratory, and Idaho.

This document, Revision 3 of the original implementation plan, updates the status of actions at all affected DOE facilities, describes a path forward for SRS that does not include the Actinide Packaging and Storage Facility, and responds to the Board's Recommendation 2000-1 issued on January 14, 2000.
3.0 BASELINE ASSUMPTIONS

Key Assumptions

In order to achieve the commitments outlined in this implementation plan, there are several key assumptions identified for each of the material categories presented in Section 5.2. These key assumptions include:

- Environmental and other studies will be used to develop alternatives; selection of alternatives will be made through Records of Decision. For many of the materials described in Section 5.2, the NEPA process has been completed, while for some activities, some milestone dates may be contingent in part on decisions made pursuant to additional NEPA review. The NEPA process is a key element of DOE's planning process and one of the principal means of achieving stakeholder involvement.

- Implementation Plan execution is predicted upon target level funding being provided by the Congress in an atmosphere of stable mission requirements.

- The 94-1 Research and Development Program (described in Appendix G) has provided the needed technologies to support the stabilization needs for this plan, and will be maintained to support emergent R&D needs related to stabilization and storage of nuclear materials.

- Facilities will be restarted and operated within the context of each site's Integrated Safety Management System.

- Transportation issues (i.e., containers, logistics, environmental and stakeholder concerns) will be identified early and resolved.
4.0 SUMMARY OF COMPLETED ACTIONS

Figure 4.1 shows the progress that has been made in stabilizing the inventories of the various categories of nuclear materials included in the 94-1 Implementation Plan. In addition, by completing numerous risk reduction actions that were called for in the original 94-1 Implementation Plan, sites have significantly reduced the risk posed by those materials awaiting stabilization. A portion of those completed actions are described below, and a listing of all stabilization activities completed to date is included in Appendix F.

Figure 4.1: Completed Actions: Material Stabilization Progress

Hanford
- High risk ash stabilized
- All bottles of Plutonium solution checked to ensure proper venting
- Thermal stabilization of Pu oxides was reinitiated in January 1999, with over 300 items thermally stabilized as of 1/1/00
- "Suspect Items" in bulged or paneled cans in glovebox 636 were x-rayed, opened and inspected during the fourth quarter of FY99. The oxide was stabilized using the current process. Then, the metal was
moved to the PFP laboratory for testing and the remaining item was repackaged and returned to the vaults.

- The prototype vertical denitrification calciner was restarted in September 1999.
- Testing of polycubes at PNNL and PFP was initiated during the second quarter of FY99, first to evaluate the processing parameters for utilization of the pyrolysis process developed by LANL, then to explore and subsequently select the utilization of the simplified muffle furnace approach.
- In the third quarter of FY99, developmental testing of the magnesium hydroxide precipitation process using plutonium solutions was initiated in the PFP laboratory. Testing continues to stabilize limited quantities of solutions, and data is being used to establish parameters for process optimization.
- Completed weighing of metals, and radiography for items with excessive weight gain during second and third quarters of FY00.
- Cofferdams installed at K-Basins

Los Alamos National Laboratory
- Performed 100 percent visual inspection of vault inventory
- Stabilized all high-risk vault items

Lawrence Livermore National Laboratory
- Performed 100 percent verification of no plutonium metal in contact with plastic

Oak Ridge
- Uranium deposits with criticality potential removed at K-25 and K-29
- Interim actions taken to preclude criticality at MSRE
- Potentially explosive fluorinated charcoal denatured
- Over 50 percent of uranium inventory removed as gaseous Uranium Hexafluoride

Mound
- All plutonium metal in contact with plastic has been repackaged

Rocky Flats
- Vented all 2,662 residue drums
- Drained all tanks of high-level plutonium solutions (over 16 tanks) and stabilized solutions
- All plutonium metal in contact with plastic has been repackaged
- Started processing all major residue categories (non-specific, various dates)
- All highly-enriched uranium solutions (2,700 L) shipped off-site and stabilized

Savannah River
- Stabilized 303,000 liters of plutonium-239 solutions
- Stabilized 13,300 liters of plutonium-242 solutions
- Stabilized all 15,844 Mark-31 targets
- All plutonium metal in contact with plastic has been repackaged
- All available plutonium metal onsite has been packaged in a DOE-STD-3013 inner container
- Approximately 500 Mk-16/22 spent fuel assemblies have been dissolved
- Dissolved all 128 containers of legacy SS&C residues
- Dissolved all 202 containers of legacy Pu sweepings residues
- Dissolved all 1249 sintered depleted uranium/plutonium fuel rods
• Stabilized high-assay Pu-238 and shipped offsite for program use
• Dispositioned all 39 containers of legacy low-assay plutonium residues
• Stabilized 144 containers of TRR and EBR-II legacy spent nuclear fuel as an emergent risk reduction need
• Dissolved 57 containers of RFETS SS&C residues

Idaho National Engineering and Environmental Laboratory
• Completed removal of all spent nuclear fuel from the CPP-603 South Basin
4.1 SAFETY ISSUE RESOLUTION

4.1.1 Department's Analysis of the Safety Issues Described within the Board's Recommendation

Review of the discussion contained in Recommendation 94-1 indicates that there were three safety issues which led to the nine sub-recommendations.

1. Within two to three years, the interim configuration of some materials stored in the nuclear weapons manufacturing pipeline could pose imminent health and safety hazards to workers and to the public. Those items should be placed in improved storage as soon as possible.

The Department has already taken action to resolve imminent safety hazards and to improve the characterization and management of all nuclear materials. Those completed and ongoing actions to maintain these materials safely until their stabilization is completed are described later in this chapter.

2. Within a reasonable amount of time, remaining materials should be stabilized and safely stored before aging causes them to become an imminent health and safety hazard to workers and the public.

Chapter 5 describes the remaining stabilization actions which remain from the 94-1 Implementation Plan, and which must be completed in response to Recommendation 2000-1.

3. Research should be performed to fill any gaps in the information base needed to allow DOE to choose between alternate processes used to convert fissile materials into a form suitable for long-term storage and disposal.

The Department of Energy chartered a Research Committee through the Nuclear Materials Stabilization Task Group in March 1995, which developed and issued the 94-1 Research and Development Plan in November 1995. With all of the stabilization technology needs effectively addressed, the Department has transitioned the 94-1 R&D Program to the Nuclear Materials Focus Area. The Focus Area monitors ongoing implementation of technologies and is in place to assist with any emergent technology needs.

4.1.2 Plutonium Stabilization and Storage Standard

DNFSB Recommendation 94-1 stipulated that storage of plutonium metal and oxide should be in conformance with the standard being finalized at that time. That standard, DOE-STD-3013-96, specified a lower limit of 50 wt% plutonium for applicable materials. In an effort to broaden the range and overcome some known limitations of DOE-STD-3013-96, a concerted effort was applied to better characterize the various categories of SNM and develop a strategy to meet the 50-year long-term storage criteria. The DOE-STD-3013-99 standard, issued in December 1999, expands the range of covered materials to include a range of 30–100 wt% plutonium plus uranium, which coincides with the immobilization acceptance criteria issued by the Office of Fissile Materials Disposition (NN-60). The fissile materials declared "excess" will be stabilized and packaged per DOE-STD-3013-99 for 50-year storage pending disposition by NN-60.

4.2 SITE-SPECIFIC RISK ISSUE MANAGEMENT ACTIVITIES
4.2.1 Hanford

Hanford's 94-1 materials with the potential to become imminent safety hazards included plutonium solutions and certain sludges in PFP as well as degraded spent nuclear fuel in water-filled storage basins. As indicated in Section 4.0, actions to stabilize a portion of the solutions, vent solution containers, and stabilize certain sludge residues were completed.

Plutonium Finishing Plant Risk Reduction Strategy

The 94-1 Implementation Plan Rev. 1 projected completion of the plutonium stabilization activities at PFP in December 2004. Stabilization actions at PFP were successfully restarted in January 1999. Further development of demonstrated acceleration opportunities have projected an earlier completion date. Based on restart experience and extensive re-planning, completion of stabilization and final packaging are now projected to be accomplished by May 2004.

As a result of continuing storage of the PFP nuclear materials, degradation of the materials and containers is expected to continue, resulting in an increased but manageable level of risk to workers over time. Approximately one to three storage containers per year require repackaging to prevent rupturing due to potential container failure as evidenced by bulging or paneling. Although a container has not ruptured in recent years, the number of items that could potentially rupture due to storage container degradation and/or material chemistry will increase with time until stabilized and packaged to meet the long-term storage standard. This is expected to increase risk to the PFP workers, with little or no increase in risk to the public or nearby site workers.

In parallel with the 1998 update, PFP was in the process of rebaselining the facility life-cycle missions of Pu materials stabilization and facility deactivation. Hanford established a "Tiger Team" to perform an extensive evaluation of all existing 94-1 plutonium stabilization processes, developed detailed resource-loaded actions necessary to accomplish the stabilization, and integrated these activities with the balance of plant activities to produce the PFP Integrated Project Management Plan (IPMP). Risk reduction associated with the various 94-1 Pu material stabilization activities and the overall 94-1 program at PFP was used as the basis for prioritization of materials stabilization. The IPMP provides credible funding profiles and supports the completion of stabilization and packaging in FY 2004 as committed to in the 1998 Implementation Plan update. The schedules for individual 94-1 materials have been modified based on risk reduction and more effective integration of activities throughout the PFP 94-1 stabilization program.

Richland included the DEAR and Laws Clauses (48 CFR 970.5204-2 and 48 CFR 970.5204-78) in the contracts for the integrating contractor and subcontractors in order to develop the infrastructure and implement Integrated Safety Management (ISM) sitewide. This involves the development of procedures and personnel training according to the principles of ISM. A strong ISM system at PFP is improving the planning, conduct and review of all work and thus improves worker safety and reduces the number of occurrences. At the facility level, PFP developed the policies/procedures to implement ISMS (Phase I verification and Phase II implementation). DOE Phase II verification of ISMS implementation at PFP is scheduled for June 2000.
The following is a summary of the risks associated with the plutonium material at PFP. This information is based on the Hanford Update of the Department of Energy's 1994 Plutonium Vulnerability Assessment for the Plutonium Finishing Plant (HNF-3541).

Plutonium Solutions

PFP currently stores approximately 430 items of plutonium bearing solutions. These solutions are stored in vented 10-liter containers. Approximately 100 of these items are polybottles stored in thin-walled stainless steel containers. The remaining items are Product Receiver (PR) containers in which the solutions are stored in thick-walled stainless steel vessels.

The primary concern with the storage of plutonium-bearing solutions is the radiolytic decay of the solution resulting in the formation of hydrogen. If improperly vented, the hydrogen could build up to within the explosive range and/or pressurize the container causing rupture. Venting of the solution containers assures pressure and hydrogen does not build up to unacceptable levels. As an added precaution, non-sparking tools and grounding straps are used when opening the containers.

Another significant concern is degradation of the container (through corrosion or embrittlement) which could cause container failure and result in contamination spread. Not all solution storage containers were fabricated to the same criteria. Some PR cans were fabricated using pipe with plates welded to the ends. The design life for these containers is not known. The concentration of HCl in the chloride solutions is also unknown. Since container corrosion rates are directly related to HCl concentration, the length of time the PR can is able to contain the solution is unknown. In addition, there are ten plutonium solution storage containers which require characterization to assist in calculating the corrosion rate for these containers.

The integrity of the polybottles inside the thin walled storage containers is expected to be good since no deterioration was noted during the 1995 downloading and stabilization of approximately 25 polybottles of chloride and fluoride solutions. Although the stainless steel container surrounding a failed polybottle would contain any leaking solution for some period of time, an increased risk of worker contamination would exist during handling or spills.

All containers of solution are stored in a vented configuration and triple contingency exists to preclude criticality in event of container failure. Additionally, criticality analyses demonstrate that fissile material concentration as a result of evaporation is critically safe based on geometry controls for the inner and outer containers. Final actions are also underway to confirm adequate venting of outer containers.

Risk Associated with Continued Storage

Continued storage of the solutions at PFP will result in some increase in the contamination risk during handling or cleanup due to container failure. This failure could be induced by corrosion, embrittlement, or pressurization due to a restricted vent. In 1995, polybottles were visually inspected with no apparent degradation observed. However, given the lack of more recent data regarding the condition of these containers as well as the material within, these materials are considered higher risk relative to other materials.
Compensatory Measures

It is recognized that no monitoring program exists for solution containers and, therefore, no early warning mechanism for container failure and leakage exists. The compensatory actions being taken are as follows:

- Solutions at PFP are vented and stored in vault type rooms restricting unnecessary worker access.
- The air in the storage rooms is monitored for alpha emitters by fixed head and Continuous Air Monitor (CAM) samplers.
- Air in the rooms is exhausted through a filtered exhaust system.
- To guard against sparking, every container is electrically grounded and only non-sparking tools are used to open the containers.
- Procedures require the workers to wear protective clothing and respirators during any activity that involves opening containers.
- Monthly visual inspections are conducted to identify any action necessary to address unanticipated activities.

Unalloyed Plutonium Metal

PFP has been storing unalloyed plutonium metal items (350 items) in their current configuration for 15 to 30 years. This metal is typically fuels grade (16 to 18% Plutonium-240) and has a relatively high level of decay heat. The long-term storage criteria for plutonium requires plutonium metals and alloys to be visually free of non-adherent corrosion products, thus requiring them to be brushed if corrosion products are visible. The material that is brushed off (primarily oxides with small amounts of hydrides and nitrides) will be thermally stabilized in muffle furnaces.

The current inventory includes a few items of plutonium metal that radiographs indicate are stored in direct contact with plastic. This configuration is known to lead to the formation of pyrophoric plutonium nitrides and plutonium hydrides. Through 1992, PFP procedures also allowed plutonium metals to be wrapped in aluminum foil, bagged-out of the glovebox, and canned in food pack cans. This placed the plutonium in the same air space as the plastic, which also may lead to the formation of plutonium hydrides and nitrides. Plutonium nitrides can also be formed from atmospheric nitrogen in the cans. Formation of nitrides poses a concern since it causes the depletion of the atmosphere in the can, which may lead to the collapse of the cans. If the collapse of cans causes the seals to fail and if oxygen reaches the hydrided metal, the hydrides and nitrides in the can could react and cause expulsion of plutonium from the can contaminating the storage location and possibly workers.

PFP completed characterization of the metal inventory in April 2000. Weighing of all items was performed to detect weight gains exceeding 5 grams. Weight gains (>5 grams) associated with approximately 5% of the metal items have been detected, indicating that air is leaking into some of the containers thus allowing the metal to oxidize. Radiography was conducted on the items exhibiting weight gains. As a result five suspect items have been relocated to glovebox storage for near term disposition. Minor bulging
has also been observed in containers of metal stored at higher temperature locations. If oxidation is allowed to continue unchecked, container breaching is possible resulting in storage location contamination and potential worker contamination. Prior to this characterization effort, two cans of metal exhibited bulging. Both were radiographed and the inner cans did not show signs of degradation. The outer cans for both were removed and replaced with new cans.

Risk Associated with Continued Storage

Continued storage of unalloyed metals will result in a continuing buildup of americium-241 with an associated increase in decay heat. This will also lead to higher radiation levels for the material and, therefore, higher operator exposures. In addition, the increase in decay heat will elevate material temperatures, which may accelerate degradation of plutonium storage container seals and promote additional hydride/nitride formation.

Compensatory Measures

Actions taken by PFP to enhance the facility’s ability to compensate for the risks associated with unalloyed metals in storage, include the following:

- PFP has a Vault Safety Inventory System (VSIS), which is used to continually monitor part of the food pack can inventory for bulging. The VSIS will not, however, detect container failures caused by the formation of plutonium nitride, which may cause cans to buckle inward. Therefore, an inspection program is currently used to ensure that the items on VSIS are visually inspected for inward buckling on an annual basis. The items not monitored by the VSIS system are visually inspected monthly.

- The unalloyed metals at PFP are stored in vault rooms thus minimizing unnecessary worker access. The air in the vault rooms is monitored for alpha emitters by fixed head and Continuous Air Monitor (CAM) samplers, and the air in the vault is exhausted through a filtered exhaust system.

- PFP utilizes a repackaging glovebox for the handling of suspect and failed containers. When identified, these containers are opened, the SNM inspected, and corrective actions taken. Typically the material would be repackaged and then returned to vault storage pending repackaging to long term storage requirements.

- PFP conducted a characterization program of weighing and radiography on the metal inventory to detect potential container failure as a result of excess oxidation.

Alloyed Plutonium Metals

PFP currently stores approximately 125 items containing plutonium alloys. Approximately half of these are seven percent plutonium aluminum alloys, which are considered stable.

Approximately thirty of these items are plutonium-uranium alloys and 38 are miscellaneous alloys. Some of these alloys, especially the plutonium-uranium alloys, may react as unalloyed plutonium metal. Although there is no direct evidence that hydrides and/or nitrides have formed on these alloys, conditions similar to those described in the discussion of unalloyed plutonium metal could be present and brushing of
hydrides and nitrides may be necessary. Many of the items were packaged prior to the issuance of PFP’s storage specification and their packaging configuration is unknown. For example, items are identified as simply stored in slip lid, lard cans, or shipping containers. Through at least 1992, PFP procedures allowed plutonium alloys to be wrapped in aluminum foil then bagged out of the glovebox and canned in food pack cans. This placed plutonium alloy in the same air space as plastic, which may lead to the formation of plutonium and uranium hydrides and nitrides.

Some of the alloys also have higher plutonium-240 content than PFP’s plutonium metals (up to 25.8% plutonium-240) and present the same decay heat concerns noted for the high plutonium-240 unalloyed plutonium metal.

The constituents of the miscellaneous plutonium alloy “scrap” are not identified. Many items are of non-Hanford origin, are pre-1980 packages, and have not been characterized.

Risk Associated with Continued Storage

For those alloys in which there is a potential for the formation of hydrides and nitrides, continued storage will result in a slight increased risk to workers during storage and throughout stabilization.

Compensatory Measures

Current compensatory measures include:

- As described for the unalloyed metals the VSIS is used to continually monitor most food pack cans for bulging.

- An annual visual inspection is used to detect food-pack cans exhibiting inward buckling due to nitride formation.

- The alloy metals at PFP will continue to be stored in vault rooms that restrict unnecessary worker access.

- As indicated previously, the air in the vault rooms is monitored for alpha emitters by fixed head and Continuous Air Monitor (CAM) samplers and the air in the vault is exhausted through a filtered exhaust system.

- PFP utilizes a repackaging glovebox for the handling of suspect and failed alloy containers. These containers can be opened, the contents inspected and corrective action taken, the material repackaged and returned to vault for storage.

- PFP conducted a characterization program of weighing and radiography on the metal inventory to detect container failure as a result of excess oxidation.
Plutonium Oxides and Mixed Oxides (> 30 wt% Pu +U)

PFP stores over 2500 items of plutonium oxides (> 30 wt%Pu+U) and over 2000 items of mixed plutonium-uranium oxides (MOX). The majority of the oxides and MOX are relatively stable. The primary hazard associated with these oxides is potential container pressurization caused by the radiolysis of impurities, such as organics or water. Container pressurization can result in breaching and contamination spread. Since these oxides have been stabilized to existing requirements in the past and are routinely monitored for signs of container pressurization, the risk of this accident occurring is considered low.

PFP also stores a large quantity of oxides that contain high percentages of chloride salt impurities which may cause corrosion of storage containers and off-gas line plugging during thermal stabilization. Other oxide-related issues include; less than adequate packaging (single contamination barriers), incomplete characterization, bulging of the inner containers, and the potential for generating flammable gasses due to deterioration of the plastic used in repackaging.

Many of the MOX items were received before current acceptance criteria were established. Based on limited radiography, some MOX items have only a single metal storage can barrier between the contaminated surface of the plutonium storage container and the vault atmosphere. These items are not packaged in accordance with current requirements and the radiographs suggest that the inner storage cans have deteriorated significantly. The corrosion mechanism is unclear, but it is likely to be result of some corrosive contaminant in the MOX scrap.

Risk Associated with Continued Storage

Continued Storage of the plutonium oxides and mixed oxides will result in an increase in risk to the workers due to potential container pressurization, continued deterioration of containers and a potential increase in hydride and nitride formation from un-stabilized metals.

Compensatory Measures

Current compensatory measures include:

- The oxide and MOX materials at PFP are stored in vault rooms restricting unnecessary worker access.
- As described for the unalloyed metals, the VSIS is used to continually monitor most food pack cans for bulging. Visual inspections are periodically performed to further identify potential problems.
- As indicated previously, the air in the vault rooms is monitored for alpha emitters by fixed head and Continuous Air Monitor (CAM) samplers and the air in the vault is exhausted through a filtered exhaust system.
- PFP will utilize a repackaging glovebox for the handling of suspect and failed alloy containers. These containers can be opened, the contents inspected, corrective action taken, the material repackaged and returned to the vault storage.
Polycubes

PFP's inventory of polycubes consists of approximately 250 vented food pack cans and polyjars. There are approximately 1,600 cubes stored in the food pack cans measuring up to 8 cubic inches each. In addition, there are approximately 20 items containing polycube scraps and miscellaneous residues resulting from the polycube fabrication process. Collectively, the polycubes contain plutonium and in some cases uranium bound in a polystyrene matrix and are over 20 years old. High radiation dose fields (over 1 R/hr on contact) have been measured. The polycubes also off-gas hydrogen and hydrocarbon gases as a result of the thermal and radiolytic decay of the polystyrene matrix. To accommodate the off-gas, the polycubes are stored in vented, filtered containers. Typically, polycubes are stored in single food pack cans that have a small hole in the top. A filter is attached to the top of the can over the hole. The polycube scraps and residues are stored in taped slip-lid containers. The taped containers provide for adequate venting to prevent build-up of hydrogen gas.

A contamination spread occurred in 1987 as a result of inverting a container of deteriorated polycubes and the filter failing. The glue that held the filter in place had apparently deteriorated due to the effects of radiation and age. Since the incident movement restrictions have been imposed.

Polycubes evaluated at PNNL and the PFP Laboratories demonstrated physical degradation of the cubes, and testing displayed a significant reduction in anticipated hydrogen off-gassing. Both conditions are the result of self-radiolysis occurring during storage. Polycubes with higher Pu or Pu+U loading displayed greater degradation of the cube geometry. Handling practices employed during FY 1999 supported numerous polycube handling activities without incident.

Risk Associated with Continued Storage

Continued storage of the polycubes will result in minor additional degradation of the structural integrity of the polycubes. The primary mechanism for the degradation of this material is through radiolysis. This degradation results in the formation of friable material which poses handling and storage risks. However, the increase in these risks will be minimal given the approximately thirty years these items have already been in storage, and evidence demonstrating significant reduction in generation of hydrogen gas. There is no evidence that delay will contribute to further degradation of the integrity of the filter adhesive.

Compensatory Measures

Filters were placed on the food pack cans, polyjars have been placed in a glovebox, and movement of the items has been restricted. The high radiation fields (>1 R/hr) and the dose associated with handling these materials make additional characterization and other, more intrusive monitoring methods, very difficult.

Compensatory actions are as follows:

- Testing of the polycubes for determining process options will include examination of current can and filter integrity. The results will also support development of the appropriate handling techniques to be used during stabilization.

- The polycubes remain stored in vault rooms restricting unnecessary worker access.
• The air in the vault rooms is monitored for alpha emitters by fixed head and Continuous Air Monitor (CAM) samplers.

• Air in the vault is exhausted through a filtered exhaust system.

• Polycube cans/jars are vented through small holes covered by individual filters.

• ALARA considerations focused on the handling and contamination issues are observed in handling polycube cans/containers.

Residues (SS&C, Ash, Oxides < 30 wt% Pu+U)

PFP stores approximately 1250 items of SS&C, ash and oxides < 30 wt% plutonium and uranium. Hazards associated with these materials are similar to those of plutonium oxides with the potential additional hazard associated with the reactivity of calcium metal in the SS&C.

SS&C items with high plutonium assay are stored in 7-inch food pack cans. These 7-inch food pack items may also contain plutonium oxide and fluoride powders and/or plutonium metal. They may contain lab scraps and samples including fines and turnings. PFP characterized these materials using process knowledge. Additional characterization will be performed, as necessary, to support disposition.

The inventory of ash from Rocky Flats was thermally stabilized to at least 450°C, and less than one wt% LOI at PFP. This should provide sufficient stability to allow for continued storage until the material is dispositioned. The Hanford-origin ash is packaged per vault storage standards and stored in taped lard cans. No specific problems have been noted with this material in storage. As with the Rocky Flats ash, this ash should be acceptable for continued storage until disposition can be accomplished.

Increase in Risk Associated with the Delay in Stabilization

A delay in the stabilization of the SS&C residues will not result in an appreciable increase in risk because the materials have historically exhibited relatively stable characteristics.

Sources and Standards

PFP stores approximately 200 items of sources and standards. The primary hazard associated with these sources and standards involves potential container pressurization caused by the radiolysis of impurities, such as organics or water, resulting in container breaching and contamination spread. These sources are relatively stable oxides and the risk of container breach is low.

Risk Associated with Continued Storage

Continued storage of the sources and standards will not result in an appreciable increase in risk because the materials consist of oxides that have been previously stabilized.
Miscellaneous Combustibles, Compounds, Scrap and Residues

PFP's inventory of miscellaneous items includes approximately 25 items of compounds (four basic types: fluorides, Pu-Zr scrap, Pu-Be scrap, and Pu-Th scrap), approximately 10 items of non-polycube combustibles, and approximately 30 items of miscellaneous scrap items. The primary hazard associated with these oxides is potential container pressurization caused by the radiolysis of impurities, such as organics or water. Container pressurization can result in breaching and contamination spread. A secondary concern exists due to the potential presence of plutonium metal and/or alloys. As described in previous sections the plutonium metal and alloys have the potential to form pyrophoric compounds (hydrides and nitrides).

Risk Associated with Continued Storage

Continued storage of this material will result in a minor increase in risk to the workers due to continuing container and material aging and the potential increase in pyrophoric hydride and nitride formation. The total plutonium content of these items is low, therefore, the increased dose associated with the additional in-growth of americium is low.

Compensatory Measures

Actions taken to enhance PFP’s ability to compensate for the risks associated with the storage of these miscellaneous items include:

- The materials remain stored in vault rooms restricting unnecessary worker access.

- As described for the unalloyed metals, the VSIS is used to continually monitor most food-pack cans for bulging.

- The air in the vault rooms is monitored for alpha emitters by fixed head and Continuous Air Monitor (CAM) samplers.

- Air in the vault is exhausted through a filtered exhaust system.

- PFP utilizes a repackaging glovebox for the handling of suspect and failed packages. These packages can be opened, the SNM inspected and corrective actions can be taken, the material repackaged and returned to vault storage.

- Characterization via records research is ongoing. This characterization will assist PFP in identifying potential problematic items.

Fuel Pins

PFP stores approximately 140 items of un-irradiated fuel pins and assemblies. An additional 30 fuel assemblies are stored at FFTF. These fuel pins and assemblies are considered safe for interim storage pending disposition. No additional stabilization or packaging is required to meet the DNFSB Recommendation 94-1 Program requirements.
K-Basins Risk Reduction Strategy

The K-East and K-West Storage Basins were constructed in the early 1950s to provide temporary storage of Single Pass Reactor fuel discharged from the K-Reactors until they were shut down in 1970. Subsequently, the basins were used for storage of N Reactor spent fuel. The basins are located approximately 1,200 ft from the banks of the Columbia River. They are unlined, concrete, 1.3 million gallon water pools with an asphaltic membrane beneath each basin. The K-East Basin presently stores approximately 1,152 metric tons of heavy metal (MTHM). The spent fuel in K-East Basin has been stored underwater in open top canisters for periods ranging from 9 to 26 years. Fuel corrosion and environmental contaminants have produced an estimated 50 m3 (max) of highly radioactive sludge spread throughout the basin. The K-West Basin presently stores approximately 953 MTHM. Prior to storage in the K-West Basin, the spent fuel was placed in closed canisters. Fuel corrosion has occurred, but radioactivity and sludge has been largely contained in the closed canisters. About 20 m3 (max) of sludge is estimated to be in the K-West Basin. Leakage to the environment from K-East Basin has occurred, most likely at the basin discharge chute construction joint. The asphaltic membrane does not extend beneath this area. The K-West Storage Basin is not believed to be leaking. The discharge chute construction joints between the foundations of the Basins and the K-Reactors are not adequately reinforced, however, and a seismic event could trigger considerable leakage.

Several near term actions have been completed or are ongoing to minimize safety and environmental risks for the short time that the fuel remains in storage at the basins. These actions include installation of cofferdams to isolate the basin water from the suspected leakage site, implementation of several dose reduction measures to minimize worker exposure, upgrades to essential facilities, improvements of the conduct of operations, and characterization of fuel and sludge.

Richland has included the DEAR and Laws clauses in the Project Hanford Management Contract as stated in the PFP portion of this section. More specifically the K-Basins have developed facility specific policies/procedures that reflect the principles of ISM and this was validated through a Phase I verification team assessment. The Phase II (full implementation) validation occurred in November 1999. The SNF Project passed the Phase II validation.

Hanford's K-Basins store approximately 2,100 metric tons heavy metal of spent nuclear fuel (SNF). The basins are located about 1,200 feet from the Columbia River. Hanford is a seismically active area, while the basins are not seismically qualified and are well beyond the end of their designed life. The project to initiate and complete removal of all SNF, sludge, debris, and water from the K-Basins has been delayed from the original 94-1 commitment dates. Risk increase is directly proportional to the continued aging of the basins.

Although the basins are not currently leaking, they have been documented as leaking in the past. Their current status as non-leakers cannot be documented to the satisfaction of all parties. Their weakest architectural feature is a construction joint where the basins abut the K-Reactor building. Cofferdams have been installed to prevent drainage of the basins should those joints fail. The K-Basins safety basis postulates a seismically induced structural failure. In that event, operators would attempt to minimize any leakage with bags of Bentonite clay. Fire department assistance would also be requested to provide make-up water. The basins must be kept filled with water due to the potential pyrophoricity of the SNF as it dries and to maintain shielding from the fuel's high radioactivity.
The only other effective risk mitigation is to hasten fuel removal to dry interim storage in the 200 area plateau. To this end, DOE is focused on swift, safe completion of the Hanford Spent Nuclear Fuel Project.

4.2.2 Savannah River Site

Risk Reduction Strategy

Safety has been and continues to be the top priority in development and execution of the SRS Nuclear Materials Stabilization and Storage (NMSS) program. With respect to the SRS 94-1/2000-1 Program, this safety imperative manifests itself most directly as reduction and/or elimination of potential threat to worker/public health and safety or potential threat of environmental insult from ongoing stewardship of these materials. The SRS approach to reduction and/or elimination of potential risks associated with 94-1/2000-1 materials is aligned with the five functional areas of the Integrated Safety Management System (ISMS), namely: (1) define the scope of work; (2) analyze the hazards; (3) develop and implement controls; (4) perform the work safely; and (5) feedback and assess for continuous improvement.

Savannah River has included in the contractor’s contract DEAR and Laws Clauses (48 CFR 970.5204-2 and 48 CFR 970.5204-78) for the integrating contractor and subcontractors to develop the infrastructure and implement Integrated Safety Management (ISM) sitewide. Implementation of ISM provides SRS with a robust safety program that can respond to urgent situations as well as identify adverse trends requiring management attention.

The remaining SRS 94-1 materials pending stabilization can be grouped according to active inventory management requirements as follows:

- **Solutions**
 - HEU solution
 - Am/Cm solution
 - Np-237 solution
 - H-Area Pu-239 solution

- **SNF and Other Fuels and Targets in Water-filled Storage Basins**
 - Mark-16/22 SNF
 - Miscellaneous fuels/targets

- **Materials in Vault Inventory**
 - Plutonium Metal and Oxide
 - Plutonium Residues

The specific actions and controls for these materials within active inventory management at SRS are discussed below.
Solutions

Highly Enriched Uranium Solutions:

Prior to commencing dissolution of Mark-16/22 spent fuel, the H-Canyon processing facility at Savannah River held 230,000 L of highly enriched uranium in dilute nitrate solutions. This material is the remainder of active, "in-process" solutions left after pre-1992 chemical processing and separation of spent nuclear fuel activities. The solutions are not suitable media for long-term storage of excess uranium, however, an active monitoring and surveillance program is being used to maintain them in a safe condition until they can be further processed for disposition.

Reviews have determined that effective controls are in place to prevent or mitigate accidents associated with the continued storage of uranium solutions in H-Canyon and Outside Facilities tanks. The most significant of these controls are the following:

- Uranium solutions (after fission products, plutonium, and neptunium have been removed) do not generate significant amounts of hydrogen, even in highly concentrated solutions. However, tanks within H-Canyon are connected to the Process Vessel Vent System and tanks outside the canyon are connected to the Recycle Vessel Vent System. Installed liquid level and specific gravity instruments provide an additional source of air to dilute evolved hydrogen.
- Solution in each tank is periodically sampled and analyzed for chemical and radioisotope composition.
- A report is issued semi-annually documenting the continued safety of storage of enriched uranium solution. (New action in FY00)
- Periodic chemical adjustments are made to maintain solution composition within approved limits.
- Liquid level in each tank is routinely monitored for unexpected changes. Action limits and required response are identified and controlled by procedure.
- Potential tank leaks are contained within sumps and would be detected by increase in sump level.
- Temperature of outside tanks is routinely monitored and controlled to prevent potential freezing of solution.

Expanded treatment, chemical adjustment, agitation, and solution movement options are available in case deficiencies occur in current storage conditions.

The H-Canyon facility will be processing additional Mark 16/22 fuel tubes for recovery of uranium and neptunium. The uranium solution will be stored for eventual transfer to TVA. The facility will also be "refreshing" existing HEU solution which will include recycle into the canyon for purification and consolidation. The solution will be consolidated in the double-wall HA-Line storage tank. The H-Canyon Authorization Basis addresses the controls necessary for protection during receipt and storage. In addition, the above listed controls will also be applied to any additional A-Line uranium storage tanks.

Americium/Curium Solution:

Savannah River's inventory of special isotopes includes americium-243 and curium-244 (Am/Cm) in 14,400 L of aqueous solution in a single tank in F-Canyon. Stabilization of the solution could not be
accomplished within the 3-year period recommended by the Board in 1994 because of the lack of capability and process. A process installed in F-Canyon was used in the early 1980s to convert small quantities of americium-241 to an oxide. However, the process equipment has not been maintained and requires extensive modification to restore it to use. A new capability and process with the ultimate goal of stabilizing the Am/Cm solution as safely and as soon as possible at the most reasonable cost is being developed. In the interim, because of the urgency of the storage conditions, DOE has implemented compensatory measures to reduce worker and environmental risk to acceptable levels.

Reviews have determined that effective controls are in place to prevent or mitigate accidents associated with the continued storage of Am/Cm in tank 17.1. The most significant of these controls are the following:

- A corrosion assessment of tank 17.1 has been completed, and a program is in place to periodically sample the tank to analyze for corrosion products and monitor corrosion rates.
- An emergency transfer route from tank 17.1 to tank 16.2 has been established to ensure that the Am/Cm solution can be safely moved should anything happen to tank 17.1.
- Solution volume in tank 17.1 is closely controlled to ensure the maximum radionuclide concentration for accident analysis calculations is not exceeded and to ensure that the full volume of 17.1 can fit into tank 16.2 if the need arises. Liquid level in the tanks is routinely monitored for unexpected changes. Action limits and required response are identified and controlled by procedure.
- Tank 17.1 has been isolated by removing all but the essential piping to and from the vessel, including the cooling water jumpers.
- Hydrogen from radiolysis is purged from the tank through the safety-significant Process Vessel Vent System.
- A backup hydrogen purge system has been installed and is continuously operated at a flow rate sufficient to dilute hydrogen in the tank vapor space below 25% of the Lower Flammability Limit (LFL). A second backup hydrogen purge system is also installed and can be manually valved into service as an additional defense.
- Potential tank leaks are contained within the canyon cell and would be detected by increase in canyon cell sump level.

Several methods for stabilizing the americium-cerium solutions were evaluated during development of the EIS for Interim Management of Nuclear Materials at the Savannah River Site (IMNM EIS). In the ROD, issued December 12, 1995, the vitrification alternative was selected. Basically, the vitrification alternative is to encapsulate the Am/Cm in a glass form.

Neptunium Solution:

SRS also has 6,000 liters of neptunium (Np-237) nitrate solution in H-Canyon. Np-237 has a potential for use as target material for production of Pu-238 to be used as a fuel for radioisotopic thermoelectric generators in spacecraft as well as terrestrial applications.

Reviews have determined that effective controls are in place to prevent or mitigate accidents associated with the continued storage of neptunium solution in H-Canyon tanks 9.6 and 9.8. The most significant of these controls are the following:
Solution in each tank is periodically sampled and analyzed for chemical and radioisotope composition.

A report is issued semi-annually documenting the continued safe storage of the neptunium solution (New action in FY00).

Periodic chemical adjustments are made to maintain solution composition within approved limits.

Steam supply is not connected to neptunium storage tanks.

All transfer lines into and out of each tank to other canyon vessels have been disconnected. Transfer lines may be reestablished for additional receipt of neptunium solutions during H-Canyon processing. See discussion below.

Hydrogen from radiolysis is purged from each tank through the safety-significant Process Vessel Vent System. Installed liquid level and specific gravity instruments provide an additional source of air to dilute evolved hydrogen.

Liquid level in each tank is routinely monitored for unexpected changes. Action limits and required response are identified and controlled by procedure.

Potential tank leaks are contained within the canyon cell and would be detected by increase in canyon cell sump level.

Safety systems are in place to continuously monitor cooling water effluent to detect potential radioactivity release to external systems and to divert contaminated water to prevent release to the environment.

Expanded treatment, chemical adjustment, agitation, and solution movement options are available in case deficiencies occur in current storage conditions.

The H-Canyon facility will be processing Mark 16/22 fuel tubes for recovery of uranium and neptunium and unirradiated Mk-53 targets for recovery of neptunium. The neptunium solution will be concentrated and stored in additional canyon tanks or combined with neptunium solution in Tanks 9.6 or 9.8. The H-Canyon Authorization Basis addresses the controls necessary for protection during receipt and storage. In addition, the above listed controls will also be applied to any neptunium storage tanks.

In the fourth Supplemental ROD to the IMNM EIS issued on October 31, 1997, DOE decided to process the solution in H-Canyon to remove decay products and other material that would interfere with subsequent conversion steps followed by transfer to HB-Line for conversion to an oxide.

Plutonium Solutions:

Savannah River completed conversion of F-Canyon plutonium solutions in April 1996. The plutonium metal produced by stabilizing solutions in the FB-Line has been packaged in containers that meet the criteria of DOE-STD-3013-99 for inner containers, using a Bagless Transfer System (BTS). Savannah River completed installation of a BTS in the FB-Line facility in August 1997 as a demonstration of the new packaging technology.

The remaining solutions at SRS requiring stabilization are in the H-Canyon. Until the solutions are stabilized the major area of concern is control of solution chemistry. Due to evaporation and radiolysis, solution chemistry requires periodic adjustments to maintain acidity and avoid unanticipated concentration or precipitation of boron and ultimately the plutonium compounds, which may increase
the potential for inadvertent criticality. Boron was added as a neutron poison and solution chemistry is adjusted to avoid precipitation of the boron and ultimately the plutonium. An increased sampling and surveillance program is in place to detect signs of deterioration. Minor leaks and spills are not a major concern since they will be contained within the canyons and fed back into the tanks without exposing the workers or posing a risk to the environment or public. Corrosion of tank cooling water coils poses a risk of environmental release. This risk is mitigated by the use of in-line radiation detectors and diversion pools, which would be employed in the event of a leak. Safety of continued storage of the H-Canyon plutonium solutions until stabilization is complete has been enhanced through additional sampling and monitoring activities.

Reviews have determined that effective controls are in place to prevent or mitigate accidents associated with the continued static storage of Pu-239 solution in H-Canyon tanks 12.1, 16.3 and 18.3. The most significant of these controls are the following:

- Boric acid is being added to each tank as an additional defense against accidental criticality. Tanks 12.1 and 18.3 currently contain boron. A schedule is being developed for boron addition to Tank 16.3.
- Solution in each tank is periodically sampled and analyzed for chemical and radioisotope composition. Corrosion products are also monitored.
- A report is issued semi-annually documenting the continued safety of storage of plutonium solution. (New action for FY00)
- Periodic chemical adjustments are made to maintain solution composition within approved limits (e.g. acidity and concentration).
- Steam supply is not connected to plutonium storage tanks.
- All transfer lines into and out of each tank to other canyon vessels have been disconnected. Transfer lines may be reestablished for additional receipt of plutonium solutions from HB-Line. See discussion below.
- Hydrogen from radiolysis is purged from each tank through the safety-significant Process Vessel Vent System. Installed liquid level and specific gravity instruments provide an additional source of air to dilute evolved hydrogen.
- Liquid level in each tank is routinely monitored for unexpected changes. Action limits and required response are identified and controlled by procedure.
- Potential tank leaks are contained within the canyon cell and would be detected by increase in canyon cell sump level.
- Safety systems are in place to continuously monitor cooling water effluent to detect potential radioactivity release to external systems and to divert contaminated water to prevent release to the environment.

Expanded treatment, chemical adjustment, agitation, and solution movement options are available in case deficiencies occur in current storage conditions.

The H-Canyon facility will be receiving and storing additional plutonium-bearing scrap solution from HB-Line. This solution will be stored in additional canyon tanks or combined with plutonium solution in Tanks 12.1, 16.3 or 18.3. The H-Canyon Authorization Basis addresses the controls necessary for protection during receipt and storage. In addition, the above listed controls will also be applied to any plutonium storage tanks.
The fourth Supplemental ROD for the IMNM EIS calls for processing these solutions through HB-Line Phase II for conversion to an oxide. The plutonium oxide will be placed in temporary storage until a facility is available with the capability to meet the DOE storage standard.

Materials in Vault Inventory

Metal in Contact with Plastic:

Based on material and packaging information available in 1995, 12 containers of metal turnings where plutonium metal was in direct contact with plastic have been repackaged. These materials will be dissolved and processed to metal using the F-Canyon and the FB-Line facilities.

Plutonium Metal and Oxide:

Savannah River has approximately 1,000 containers of high purity plutonium solids stored in F-Area vaults. Each container holds at least 100 g of fissile material that is predominantly Pu-239 with minimal impurities. The stored material includes alloys, compounds, oxides, and large metal pieces. Savannah River had accumulated these high grade plutonium solids as a result of both F-Area facility operations and shipments received from other DOE sites. These materials were stored in a variety of containers within F-Area vaults and present extended storage concerns because of their physical condition. The degree of concern varies depending on the material form and packaging configuration. Additionally, over 1,100 containers of metal and oxide will be produced from the stabilization of solutions, targets, residues, and classified metal which will also require packaging and treatment to meet the metal and oxide storage standard. The objective is to ensure that all plutonium solids (metal and oxide) are in conformance with the DOE metal and oxide standard, DOE-STD-3013-99.

Plastic packaging materials historically used in storage of these materials breakdown through radiolysis. In addition, pyrophoricity hazards can arise when hydriding of plutonium metal occurs, and personnel exposure and contamination hazards can arise through container degradation. The current SRS inventory of plutonium metal and all additional plutonium metal being produced from ongoing stabilization activities is being packaged in inner containers that meet the requirements of DOE-STD-3013-99 using a bagless transfer system installed in FB-Line in August 1997. The bagless transfer system repackages these items into welded stainless steel containers with inert helium internal atmosphere, practically eliminating the potential risks associated with the previous historical packaging system.

As a result of the September 1, 1999 occurrence in which several workers were contaminated due to a faulty weld in a bagless can, several improvements in the bagless transfer system have been made or are planned to reduce the potential for future weld failures. These include:

- Improved control and evaluation of welding parameters
- Improved inspection of completed welds
- Improved leak detection technique
- Increased frequency of surveillance of bagless cans
Several activities are underway to reduce risk until the remainder of the material can be repackaged. Effective controls are in place or being established to prevent or mitigate accidents associated with the continued storage of these materials in the FB-Line and 235-F Vaults. The most significant of these controls are the following:

- Design features of the vaults (e.g., monitors, ventilation, limited access, etc.) and radiological controls and procedures are in place to minimize worker risk in the event of container failure.
- Periodic weighing of items to detect unexpected weight gain.
- Periodic dimensional verification of containers to detect potential container deformation.
- Radiography of items to verify internal conditions.
- Radiological surveys of container surfaces to detect potential contamination release.
- Periodic Material Control and Accountability physical inspection of items.
- Periodic verification of filter functionality on containers so equipped.

Action criteria and required responses are identified and controlled by procedure. These include transfer to gloveboxes for physical sampling and interim repackaging if necessary. These actions and controls are described in detail in A Surveillance Program to Assure Safe Storage of FB-Line and Building 235F Vault Materials, WSRC-TR-96-0413, December 30, 1996. This program is responsive to the DOE Criteria for Interim Safe Storage of Plutonium-Bearing Solid Materials, November 1995. Since October 1998, a small number of storage containers have been repackaged as a result of anomalies identified through the vault surveillance program.

Plutonium Residues:

Savannah River identified residues in eight categories: 1) plutonium sweepings (202 containers); 2) plutonium turnings (37 containers); 3) Sand, Slag, and Crucibles (128 containers); 4) miscellaneous plutonium metal (10 containers); 5) miscellaneous plutonium alloy (18 containers); 6) mixed scrap (390 containers); 7) plutonium scrap (480 containers); and 8) DU/Pu (5 containers [1249 RODs, 2 MTU]).

The ES&H Plutonium Vulnerability Assessment identifies these materials as at-risk or possibly unstable. The degree of concern varies depending on the isotopic content, chemical impurities, and packaging. The IMNM EIS ROD, issued December 12, 1995, selected stabilization by dissolving material in F- or H-Area, purifying the plutonium in solution, and transferring the residual solution to FB- or HB-Line for conversion to a metal or oxide. The resulting metal and oxide will be handled similarly to the existing metal and oxide as discussed above. The IMNM EIS ROD also selected additional stabilization options, such as processing and storage for vitrification in the DWPF, for use where appropriate.

The stabilization pathway for these materials is to fully characterize them through analytical sampling to support aqueous processing. Where material and packaging properties are currently characterized incompletely, a program will be instituted to select the required stabilization process. Methods used will include NDA using digital radiography equipment and selected sampling of containers using existing gloveboxes with modification.

To date, more than 1,600 residue items previously stored in FB-Line and 235-F have been stabilized in F-Canyon and HB-Line. In addition, 110 other containers (100 FL-10s and 10 food pack cans) have
been characterized for future stabilization and repackaged in more suitable containers for interim storage while awaiting stabilization.

Until the stabilization options can be exercised, the materials are being actively managed in vault inventory under the surveillance and monitoring program described above for plutonium metals and oxides.

SNF and Other Fuels and Targets in Water-filled Storage Basins

Mark-16/22 SNF and Miscellaneous Fuels and Targets:

The K- and L-Reactor Disassembly Basins are unlined, concrete water pools that store spent fuel, target assemblies, and other radioactive material. The basins have been in operation since 1954 and hold 3.5 to 4.5 million gallons each. With the Mark-31 targets having been stabilized, and approximately 500 Mk-22 spent fuel assemblies dissolved, the remaining inventory of SNF in the basins consists of approximately 1,400 Mark-16 and Mark-22 spent fuel elements. The extended duration of storage, poor water chemistry control, galvanic coupling, damaged cladding due to handling, and lack of appropriate water filtration systems all contributed to accelerated corrosion of the spent nuclear fuel and target materials and increased radioactivity levels in the water of the Basins. Additionally, the facilities were not designed to meet current seismic standards, and the current leak detection method is not sufficiently sensitive to detect small leaks. However, a structural assessment for the K- and L-Reactor Disassembly Basins exterior walls and foundations determined that only minor leakage could occur through an expansion joint or cracks in the retaining walls as the result of an earthquake.

The Receiving Basin for Off-Site Fuels (RBOF) Facility stores reactor fuel elements from off-site reactors and occasionally from on-site reactors. The RBOF is a concrete pool with a volume of approximately 500,000 gallons. Placed into operation in 1963, it has a stainless steel bottom and Phenoline resin-coated walls. The original design incorporated a basin water chemistry control system consisting of a filter and mixed ion-exchange resin deionizer system. The fuel elements in the RBOF, some of which have been in the basin for 30 years, show no visible signs of corrosion. The fuel assemblies, canisters of fuel, and targets are stored at RBOF in storage racks that provide the spacing required to preclude nuclear criticality. Fuel consolidation to provide approximately 1,250 additional RBOF storage spaces was completed in August 1996.

Upgrades, necessary to permit extended storage of aluminum-clad SNF in both the K- and L-Reactor Disassembly Basins, have been completed. These changes have improved the Reactor Disassembly Basins water chemistry to levels approaching RBOF. The most significant of these upgrades are the following:

- Implementation of a corrosion surveillance program.
- Reorientation of fuel from vertical to horizontal storage to eliminate galvanic coupling corrosion.
- Use of high-capacity vendor water treatment to quickly lower water conductivity from over 120 μmho/cm to less than 10 μmho/cm.
- Addition of on-line deionization capability and a deionized make-up water system.
- Completion of a series of K- and L-Basin upgrade projects in May 1996.
The Secretary of Energy described these upgrades in a January 9, 1998, letter to the DNFSB, and the DNFSB indicated their concurrence that these actions had sufficiently improved basin water quality in an April 15, 1998, letter to the Secretary of Energy.

Based upon IMNM EIS RODs, Mark-31 target stabilization (December 12, 1995 ROD) was completed in March 1997, and dissolution of SRS Mark-16 and Mark-22 HEU SNF (February 8, 1996 ROD) began in July 1997. The HEU SNF is being dissolved in the H-Canyon consistent with past practice. The resulting enriched uranium solutions are now transferred to the enriched uranium storage tank in the H-Area A-Line facility for temporary storage. Miscellaneous aluminum-clad targets and fuels will also be dissolved, and the resulting solutions will be transferred to the Waste Tank Farm. The eventual vitrification of radioactive material will occur in the Defense Waste Processing Facility.

4.2.3 Rocky Flats

Rocky Flats' share of 94-1 materials with the potential to become imminent safety hazards included plutonium and uranium solutions; plutonium metal in contact with plastic; residues in unvented drums and some residue material categories (e.g., salts and graphite fines). As discussed in Section 4.0, all metal in contact with plastic has been repackaged, all drums containing plutonium residues have been vented and uranium-bearing solutions have been shipped to an off-site vendor and stabilized.

Risk Reduction Strategy

Rocky Flats has included in the contractor's contract DEAR and Laws Clauses (48 CFR 970.5204-2 and 48 CFR 970.5204-78) for the integrating contractor and subcontractors to develop the infrastructure and implement Integrated Safety Management (ISM) sitewide. More specifically, the ISM verification team has validated the ISM Phase I and II and P450.5 implementation for Buildings 771, 374, 707, 776, 559, and 774. The ISM system at Rocky Flats is proving its ability to continuously provide a sound safety program while responding to changes in strategy for site closure. In February 2000, the Department declared that the Rocky Flats Environmental Technology Site has implemented its Integrated Safety Management System.

Plutonium Solutions

Plutonium solutions originally existed in Buildings 371, 559, 771, 776/777, and 779, with the majority being in Buildings 371 and 771. These original solutions have been removed from Buildings 371, 776/777 and 779. Plutonium solutions have been drained and stabilized from the tanks in Buildings 771. The tanks that contained measurable volumes posed the most significant risk in both buildings. While the remaining solutions await stabilization, several interim measures have been taken to minimize the risks of continued storage. Solutions stored in plastic bottles have been transferred to gloveboxes and vented to decrease the rate of degradation and inspected to identify incipient failures in time to replace the bottles. Building 771 and Building 371 tanks have been drained, solution stabilized, and tap and draining of process systems initiated. Tap and draining of Building 371 systems and processing of all Building 371 solutions were completed in June 1999. Access to areas where the potential for leakage from tanks or pipes exists is strictly controlled. Alarm systems are in place to detect airborne contamination from spills or leaks and alert personnel. Piping system flanges and
valves have been encased in plastic shrink wrap to provide an additional barrier between the solutions and the workers.

The plutonium in these solutions is surplus to DOE's needs. Therefore, Rocky Flats is solidifying as many solutions as possible through cementation. Some higher level solutions require an additional precipitation step to remove the plutonium from the waste stream in order to meet waste disposal acceptance criteria and waste minimization goals.

The solutions that had been stored in Buildings 559, 776/777 and 779 have been transferred to Building 771 for batching or Building 371 for processing as appropriate. Building 559 continues to generate small quantities of low-level waste solutions due to analytical analysis to support Site closure. Low-level solutions in Building 771, including holdup drained from piping systems and low-points, are being batched and transferred to Building 774 for cementation. Cementing the low-level solutions began in October 1993, and to date over 7200 liters have been solidified. The high-level uranium and chloride solutions have been processed in Building 771 using a hydroxide precipitation method. The filtrates from that process were cemented in Building 774. The high-level (>6.0 gm/L) plutonium solutions in Building 771 tanks have been drained to bottles. The high-level solution bottles have been processed through the Caustic Waste Treatment System in Building 371, which is also a hydroxide precipitation process.

The solutions that remain in process system pipes in Building 771 are corrosive and continue to generate hydrogen and deteriorate piping integrity resulting in leaks. These solutions present worker safety hazards from spills, and the potential for detonation and criticality. The removal and stabilization of solutions continues to be a high priority activity at Rocky Flats. System draining and piping removal activity prioritization is based on risk. In general, the actinide systems that are leaking and generating hydrogen are removed earlier. Leaking non-actinide systems are considered higher risk than non-leaking actinide systems. As of March 31, 2000, 22 of 38 systems have been drained and 20 of 38 systems have been removed.

Metals and Oxides

All plutonium metal items that were not in compliance with the Site storage requirements (i.e., HSP 31.11) have been physically inspected. Originally, 1,858 items were identified as not in compliance; of these 256 items were suspected of being packaged in direct contact with plastic. Each one of these was opened, brushed, and repackaged by November 1995. The remainder of the 1,858 items were brushed and repackaged by May 1997, including an additional 100 items which had been identified also to be suspect during the inspection process. All generated oxide, plus the existing backlog of unstabilized oxide, underwent thermal stabilization.

Residues

The Rocky Flats Environmental Technology Site has an inventory of approximately 106 metric tons of residues packaged in 3,930 55-gallon drums and 3,950 containers. The treatment of these residues was analyzed in the Final Environmental Impact Statement on Management of Certain Plutonium Residues and Scrub Alloy Stored at the Rocky Flats Environmental Technology Site (August 1998). These residues contain approximately 3 metric tons of plutonium and are stored in buildings 371, 707,
776, and 777. Most of these residues were originally classified as high risk. However the majority have been reclassified as low risk due to accomplishing actions that lowered their contained storage risk (i.e., venting of drums) and to extensive characterization of the residues during 1997 and 1998.

For most categories of residues, some form of stabilization or separation was thought to be needed in order to meet interim storage requirements, disposal requirements, or to terminate safeguards. Through characterization, innovations such as the pipe component, safeguards termination limit variances, and process refinements, acceleration of residue repackaging and removal is possible. Improvements in the IP milestone dates are proposed and the plan is now integrated to support Site closure. Table 4.2.3-1 summarizes the crosswalk between current path forward for residues and the original 94-1 Implementation Plan.

Characterization Insights: During 1997 and 1998, extensive characterization of the Rocky Flats residues was completed. With the exception of IDC 333, all characterization data at the 80 percent confidence level indicates that a hazard exists in no more than 15 percent of any IDC. To reclassify high risk residues as low risk, additional characterization samples were obtained to ensure that there is a 95 percent confidence level that a hazard exists in no more than 5 percent of the population (“95/5 confidence level”). The majority of residues have been re-characterized as low risk.

Packaging Residues into a Pipe Component: The pipe overpack component (POC) was developed by RFETS to increase the plutonium loading of the TRUPACT II in order to minimize the amount of drums and shipments to WIPP and to improve storage safety. The POC underwent and passed the Department of Transportation type B shipping container testing at the Sandia National Laboratory and was subsequently certified by the Nuclear Regulatory Commission for use.

Characterization analyses indicate that many of the residues can be classified as low risk even with small quantities of metallic species present. The amount of elemental metals that can be contained within a POC and undergo instantaneous oxidation without compromising the O-ring gasket has been evaluated. The POC has been structurally assessed and the POC’s filter has been physically tested. All candidate IDCs for the POC can be safely contained without consequence.

The POC provides an additional margin of safety with regard to their storage, handling, transportation, and disposal. The DOE response to the Defense Nuclear Facilities Safety Board Recommendation 94-3 required that a strategy be developed to reduce risk to the public and to the worker from highly dispersible residues. The strategy, developed in April 1997, was to place dispersible residues into the POC. The tests conducted at the Sandia National Laboratory and a nuclear safety evaluation concluded that transuranic waste in a pipe component could be excluded from the material at risk associated with a seismic event.
<table>
<thead>
<tr>
<th>Category</th>
<th>Residue/ Quantities/ IDCs</th>
<th>Path Forward</th>
<th>Crosswalk from original 94-1 IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Direct Repack Salts</td>
<td>15,907 kg</td>
<td>• IDCs 333, 655 and 044 moved to the Ash category</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blend, as required, repack into the pipe component and ship to WIPP</td>
<td>• IDC 443, in figure 3.3-2 of the original 94-1 IP is a typo (should have been 433) and does not exist</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(will pyro-oxidize the following IDCs 365, 413, 414, 427, 434, and 654)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IDCs 363, 364, 365, 404,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>405, 406, 407, 408, 409,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>410, 411, 412, 413, 414,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>415, 416, 418, 426, 427,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>429, 433, 434, 435, 473,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>654</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ash</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2a. Ash and Graphite Fines</td>
<td>24,509 kg</td>
<td>• IDC 089 has been moved to Wet/Combustibles category</td>
</tr>
<tr>
<td></td>
<td>IDCs 044, 310, 333, 368,</td>
<td></td>
<td>• IDC 312 has been moved to Dry/Repacks category</td>
</tr>
<tr>
<td></td>
<td>372, 373, 374, 378, 419,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>420, 421, 422, 423, 428,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>601, and 655</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Size reduce and blend, if necessary, and repack into the pipe component and</td>
<td>• Combustible and Wet miscellaneous categories have been combined to a single Wet/Combustibles category</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ship to WIPP (IDC 333 will be stabilized)</td>
<td>• IDCs 301, 485, 486, 489 have been moved to the Dry/Repacks category</td>
</tr>
<tr>
<td></td>
<td>IDCs 387, 390, 391, 392,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>393, 394, 395, 396, and 398</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet/Combustibles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3a. Wet/Combustible residues</td>
<td>23,061 kg</td>
<td>• Other 78 kg</td>
</tr>
<tr>
<td></td>
<td>IDCs 085, 089, 290, 291,</td>
<td></td>
<td>• IDC 050 (skulls) have been dispositioned and no longer exist</td>
</tr>
<tr>
<td></td>
<td>292, 299, 330, 331, 331G,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>332, 335, 336, 337, 338,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>339, 340, 341, 342, 376,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>430, 431, 434, 441, 490,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and H61</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Treat for nitrate or organic contaminants, if necessary, or otherwise treat,</td>
<td>• IDCs previously categorized as Inorganic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and package for shipment to WIPP (Leaded rubber gloves, IDCs 339 and 341,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>have already been washed; IX column resins, IDC 430 and 431 have been</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rinsed and will be cemented for WIPP)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IDCs 090, 091,092, 093,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>097</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3b. Fluoride residues</td>
<td>316 kg</td>
<td>• Fluorides will be shipped to WIPP</td>
</tr>
<tr>
<td></td>
<td>IDCs 090, 091,092, 093,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>097</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repackage for disposal to WIPP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IDCs 090, 091,092, 093,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>097</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry/Repacks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Dry/Repack residues</td>
<td>39,328 kg</td>
<td>• IDCs previously categorized as Inorganic</td>
</tr>
<tr>
<td></td>
<td>IDCs 197, 300, 301, 303,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>312, 320, 321, 334, 360,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>370, 371,377, 438, 440,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>442, 479, 480, 484, 485,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>486, and 499</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Size reduce, declassify, and blend, if necessary, and repack for shipment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>to WIPP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IDCs 090, 091,092, 093,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>097</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Other 78 kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IDCs 050 and 080</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| **Table 4.2.3-1: Crosswalk between current RFETS residue path forward and original DNFSB 94-1 IP** | | | |
Safeguard Termination Limit Variances: Following dissemination of guidance by the Department of Energy for terminating safeguards on nuclear material, additional processing requirements were identified to either reduce the plutonium content of the residue or to make plutonium recovery more difficult in order to meet these Safeguards Termination Limits (STL). The Rocky Flats Environmental Technology Site requested and received authority to terminate safeguards on all residues below ten weight percent plutonium that are planned to be disposed of at WIPP. With the implementation of additional safeguard controls and through lowering of the plutonium concentration during repackaging, a sufficient level of safeguards protection can be provided for these residues during the transport to and above ground storage at WIPP prior to disposal.

Salts

All high risk salts were stabilized by July 1999. Stabilization consisted of pyro-oxidation/blending to below 10 weight percent plutonium concentration, and packaging in a pipe overpack component to meet ISSC and WIPP standards.

Sand, Slag and Crucible

Sand, Slag and Crucible (SS&C) residues were initially planned to be shipped to SRS. However, with the opening of WIPP in March 1999 and resolution of technical issues which had made disposal of these residues at WIPP uncertain, there is no longer any advantage in shipping SS&C to SRS for processing. The SS&C will be repackaged and shipped to WIPP for disposal. This will result in final disposition several years earlier than the previous approach and will be more cost effective.

The majority of SS&C is currently repackaged in a configuration (non-vented) that supported shipment to SRS. A surveillance program has been implemented to ensure the SS&C is stored safely until the material is repackaged for WIPP disposal. SS&C residues have been characterized to a 95% confidence level and have been reclassified as low risk.

Wet/Combustibles

All leaded gloves have been stabilized. Repackaging wet/combustible residues to meet the ISSC and the WIPP acceptance criteria started on October 6, 1998. Ion exchange resins were classified as high risk due to the fuel and oxidizer in intimate contact concern. Cementation of the ion exchange resins was completed in February 1999.

Approximately 11,000 kg of wet/combustible residues were classified as high risk. Characterization of the high risk combustibles at the 95 percent level was completed in February 1999. All high risk wet/combustible residues have been reclassified as low risk.

Fluorides

The decision to ship the fluoride residues to SRS was in the first ROD for the Residues and Scrub Alloy EIS (issued November 25, 1998). However, the delays in the shipping container
approval and unresolved transportation issues severely impact the schedules for closure of
the Rocky Flats Environmental Technology Site.

The fluoride residues were originally classified as a low risk and also have been confirmed
to be a low risk through the characterization program. The first ROD was subsequently
amended (August 25, 1999) to allow fluoride residues to be repackaged and disposed of to
WIPP.

Ash

Most of the ash residues initially classified as high risk have been re-characterized as low risk.
The primary exception is IDC 333 (calcium metal), which was stabilized by April 1999.

4.2.4 Oak Ridge

Deposit Removal Project at the East Tennessee Technology Park (ETTP): All of Oak Ridge’s Deposit
Removal Project commitments at the ETTP have been completed. The original materials at the ETTP
were 65 deposits of HEU in the systems in the K-25 Building which were greater than 500 grams each
and may have presented an unacceptable criticality risk. Knowledge gained during completion of
mechanical removal of four of the deposits in March 1996 and additional criticality safety analyses
caused the scope of the project to be reassessed. All but nine of the 61 deposits remaining were
determined to be in stable configurations that satisfied the double contingency principle for criticality
safety and, therefore, did not require near-term removal. Additionally, three deposits in the
K-29 Building were judged to be of sufficient concern that they were added to the project.

As a result of the reassessment of the K-25 deposits and the addition of the K-29 deposits, Oak Ridge
submitted a proposed change to the Recommendation 94-1 Implementation Plan in July 1997. The
change, which was approved by the Secretary in October 1997 and subsequently accepted by the
DNFSB, revised the site’s 94-1 Deposit Removal commitments into two categories. Category 1
deposits, defined as deposits having one control on a single nuclear parameter, were removed by
early December 1997 completing that commitment on time. The Category 2 deposits (those having
multiple controls on a single nuclear parameter) were physically removed by January 29, 1998, thus
completing the commitment two months early.

Molten Salt Reactor Experiment (MSRE): The Molten Salt Reactor operated from 1965 through 1969
to investigate molten salt reactors for commercial power applications. The reactor fuel, uranium
tetrafluoride, was a constituent in a molten salt mixture including lithium, beryllium, and zirconium
fluorides that circulated through the reactor primary system. Initially the reactor was fueled with U-235,
which was replaced with U-233 in 1968. Less than 1 kg of plutonium tri-fluoride was added in 1969.
When the reactor was shutdown, the fuel salt was drained into two fuel drain tanks in the drain tank
cell, where it cooled and solidified. The reactor core was partially cleaned by circulating a molten flush
salt through the system, which was then drained into a flush tank for storage. Following a post-
operation examination, the facility was placed in a surveillance and maintenance program to await
eventual decommissioning. Radiolysis of the fuel salt was expected to slowly produce fluorine (F_2) gas.
A procedure to annually heat the salt without melting was begun to recombine the F_2 into the salt.
In the late 1980s, radiological surveillance at the facility indicated elevated radiation in piping connected to the drain tanks. A visible release of an unidentified gas was also observed from the off-gas system piping during a maintenance action. An investigation was initiated. Gas samples taken in 1994 indicated significant concentrations of uranium hexa-fluoride (UF₆) and F₂. A significant solid deposit of uranium was also detected in the inlet section of a charcoal filter in the off-gas system. This filter, the Auxiliary Charcoal Bed (ACB) was located under water in a concrete cell outside the reactor building. If water were to have entered the ACB and migrated to the deposit, the potential for an accidental criticality would have existed. In addition, the exposure of the activated charcoal in the bed to both F₂ and UF₆ was postulated, and later confirmed in laboratory testing, to have created a potentially explosive compound mixed with the uranium deposit.

A comprehensive plan was developed in 1994 to implement interim corrective measures to mitigate the criticality potential, stop continued uranium migration to the charcoal bed, and enhance the containment of the charcoal bed cell to prevent radionuclide releases from a potential explosion. These measures were completed in November 1995. During these first remediation actions, uranium migration into fuel processing equipment was discovered in additional cells at the facility. In early 1996 during preparations for removal of the UF₆ and F₂, off-gas system pressures near the drain tanks were measured at 10 psig and several internal plugs in the piping system were discovered. A chemical trapping system to repressurize the off-gas system and remove the UF₆ and F₂ started operation in November 1996. Initial operation removed small amounts of UF₆ and F₂, and non-volatile blockages were confirmed.

The new information on the extent of uranium migration and blockages in the MSRE piping led to an expansion of the scope of the original program and development of a revised plan for remediation. The revised plan was included in the Implementation Plan change approved by the Secretary and accepted by the DNFSB in late 1997.

Concentration of gaseous UF₆ in the fuel and flush tank void spaces and the off-gas piping has been reduced to less than one percent by dilution purges and CIF₃ treatments. Chemical denaturing of the charcoal bed to minimize the explosive potential of the fluorinated charcoal was completed in March 1998. By August 1998, 22.3 kg of uranium in the form of UF₆ had been extracted with the gas removal equipment.

4.2.5 Los Alamos National Laboratory

Materials in the original 94-1 inventory at Los Alamos National Laboratory (LANL) included several high-risk residue material categories (sand, slag and crucible, hydroxide precipitates, silica filter residues, and cellulose clean-up rags). Los Alamos has completed stabilization of all high-risk vault items. The remaining high-risk inventory of 17 items as described in Table 5.25.1 is the Laboratory-wide inventory and includes uranium residues, Pu-238 residues, and Pu-242 residues. The capability to stabilize both high-risk HEU items and Pu-238 items is still under development; and as a result alternate disposition paths are being evaluated for these items. The high-risk Pu-242 items are expected to be stabilized by the end of FY2000.
The LANL 94-1 residue processing efforts have been underway for several years now. In 1995, a risk-based prioritization scheme was developed that focused on the risks as identified in the DNFSB recommendation 94-1. Since LANL had not observed total package failure (loss of containment) for items stored in the vault, the focus was on inner-package failure as a metric. Since that time, a large number of items (>2000) have been inspected for loss of inner-package integrity. Most of these items also have been processed and stabilized or recovered. This data suggests the following: 1) the likelihood of inner-package failure is only loosely coupled to the matrix material; 2) inner-package failure is a function of package age and/or packaging technique but exact cause of failure is difficult to determine; 3) the likelihood of total package failure is very small and can be properly managed by a surveillance program as part of vault operations.

4.2.6 Lawrence Livermore National Laboratory

The 2000-1 inventory at LLNL includes 114 cans of ash residues, 91 containers of metal that are either double canned or that use aluminum foil as the inner barrier, and 92 containers of other plutonium oxides greater than 50 wt% plutonium. This inventory is located in Building 332, which is a functional plutonium processing and handling facility that meets Federal, state, and local environmental regulations as outlined in the LLNL site-wide Environmental Impact Statement. The ongoing packaging characterization and non-destructive assay program at LLNL which was begun under 94-1 has not identified any urgent risk items.
5.0 REMAINING STABILIZATION ACTIVITIES

This chapter describes the remaining stabilization actions which remain from the 94-1 Implementation Plan, and which must be completed in response to Recommendation 2000-1.

5.1 INVENTORY SUMMARIES

The original 94-1 Implementation Plan (Rev. 0, February 1995) identified the inventories of nuclear materials requiring stabilization. The following sections summarize the remaining material inventories in the context of the original inventories.

5.1.1 Plutonium Solutions

Approximately 412,000 liters of Pu-239 solutions existed throughout the DOE complex, primarily at Rocky Flats, Savannah River, and Hanford, at the time the Plutonium Vulnerability Assessment was completed in 1994. These plutonium nitrate and chloride solutions were in the process of being converted to a purified plutonium metal or oxide, or in facility process system hold-up, when the facilities were shutdown. About 90% of those solutions have been stabilized, and approximately 40,000 liters still require stabilization.

Table 5.1.1 compares the plutonium solutions inventories at the three major sites. The tabulated information includes quantities existing at the time the original Recommendation 94-1 Implementation Plan was promulgated and changes in the inventories that have occurred since then. Note that changes in total quantities to be stabilized at Rocky Flats and Hanford reflect improved inventory estimates.

Solidification is used to stabilize plutonium solutions. Once solidified, the plutonium metal/oxide would be safely stored until final material disposition is determined. Since intersite transport of plutonium solutions is prohibited, integration of stabilization capabilities between the sites is not an option under consideration. Stabilization at each site ranges from the use of existing facilities, such as a Savannah River canyon, to the development of additional processes such as Magnesium Hydroxide precipitation at Hanford's Plutonium Finishing Plant.
Table 5.1.1: Plutonium (Pu-239) Solutions Inventory Summary

<table>
<thead>
<tr>
<th>Site</th>
<th>Plutonium Content (Kg)</th>
<th>Original Quantity (L)</th>
<th>Original Location</th>
<th>Adjusted Inventory (L)</th>
<th>Adjusted Plutonium Content</th>
<th>Remaining to be Stabilized (Kg) as of 3/00</th>
<th>Plutonium Stabilized (Kg)</th>
<th>Current Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocky Flats</td>
<td>143</td>
<td>30,000</td>
<td>Bidgs 371, 559, 771, 776/777, 779</td>
<td>30,000</td>
<td>143 Kg</td>
<td>2,000+ ‡</td>
<td>100</td>
<td>Bidgs 371, 559, 771</td>
</tr>
<tr>
<td>Savannah River</td>
<td>Classified</td>
<td>320,000</td>
<td>F-Canyon</td>
<td>-*</td>
<td>--</td>
<td>0</td>
<td>Classified</td>
<td>--</td>
</tr>
<tr>
<td>Savannah River</td>
<td>Classified</td>
<td>34,000</td>
<td>H-Canyon</td>
<td>34,000</td>
<td>Classified</td>
<td>34,000</td>
<td>0</td>
<td>H-Canyon</td>
</tr>
<tr>
<td>Hanford</td>
<td>358</td>
<td>4,800</td>
<td>Plutonium Finishing Plant</td>
<td>4,690**</td>
<td>341</td>
<td>4,270</td>
<td>30</td>
<td>PFP</td>
</tr>
<tr>
<td>Hanford</td>
<td>9</td>
<td>22,700</td>
<td>PUREX</td>
<td>--</td>
<td>--</td>
<td>0</td>
<td>None***</td>
<td>Tank Farm</td>
</tr>
</tbody>
</table>

* Stabilization of F-Canyon solutions by conversion to metal was completed in April 1996.
** Quantity adjusted from EIS bounding case to reflect correct quantity.
*** Neutralization and transfer of PUREX solutions to the tank farms was completed in April 1995.
‡ The actual plutonium solutions drained from piping systems are expected to be an order of magnitude less than estimated.
5.1.2 Plutonium Metals and Oxides

The DOE currently manages large quantities of plutonium metal and oxide. In general, the metal and oxide exists in several grades and forms, and is packaged in a multitude of configurations, most of which were prepared a number of years ago and are not suitable for long-term storage.

Tables 5.1.2-1 and 5.1.2-2 respectively compare the metal and oxide (>50% Pu) inventories at the affected sites. The tabulated information includes the quantities described in the original Recommendation 94-1 Implementation Plan and changes in the inventories that have occurred since then.

DOE’s commitment is to place all plutonium metal and oxide which is excess to programmatic needs into a form which is suitable for storage until disposition of the material can be accomplished. For metal, stabilization is accomplished by brushing to remove any oxide which has formed on the item's surface then packaging in a welded container in an inert atmosphere using a “bagless transfer” technology (or, in the case of LANL, an electrolytic decontamination technology) which does not require the use of plastic bags or gaskets. Oxide is packaged similarly, however before packaging it is heated to a high temperature to drive off any moisture or organics that may have been absorbed in the material. Additional metal or oxide materials which are generated at processing sites from the stabilization of other material forms will be packaged to the same standard.

An exception to the above description is scrub alloy, a plutonium-rich alloy material which is the byproduct of a process used to purify plutonium. Scrub alloy contains high quantities of americium which poses a radiation exposure hazard. Current plans are for scrub alloy to undergo a separation process to remove constituents from the alloy which would otherwise make it unacceptable to the Materials Disposition program. In accordance with the first ROD for the Residues and Scrub Alloy EIS (issued November 25, 1998), all RFETS scrub alloy has been shipped to the Savannah River Site for processing in the canyon facilities.
Table 5.1.2-1: Plutonium Metals

<table>
<thead>
<tr>
<th>Site</th>
<th>Original SNM Inventory (kg)</th>
<th>Original Number of Items</th>
<th>Original Locations</th>
<th>Adjusted Number of Items (See Notes)</th>
<th>Remaining to be Stabilized as of 3/00</th>
<th>Remaining Items’ Location(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocky Flats</td>
<td>6,600</td>
<td>3,403</td>
<td>371, 559, 707, 771, 776/777, 779,991</td>
<td>3,403</td>
<td>3,403</td>
<td>371, 707</td>
</tr>
<tr>
<td>Hanford</td>
<td>700</td>
<td>350</td>
<td>PFP, PNNL*</td>
<td>352 (Note 2)</td>
<td>339</td>
<td>PFP</td>
</tr>
<tr>
<td>Los Alamos</td>
<td>1,133</td>
<td>2,000</td>
<td>TA-55, CMR, TA-18</td>
<td>210 (Note 3)</td>
<td>210</td>
<td>n/a</td>
</tr>
<tr>
<td>Savannah River</td>
<td>490</td>
<td>450</td>
<td>FB-Line, 235F, SRTC</td>
<td>174</td>
<td>29</td>
<td>FB-Line</td>
</tr>
<tr>
<td>Argonne-West</td>
<td>**</td>
<td>**</td>
<td>ZPPR, FMF, 752</td>
<td>**</td>
<td>**</td>
<td>ZPPR, FMF, 752</td>
</tr>
<tr>
<td>Argonne-East</td>
<td>0.45</td>
<td>210</td>
<td>205, 212, 315</td>
<td>210</td>
<td>210</td>
<td>205, 212, 315</td>
</tr>
<tr>
<td>Lawrence Livermore</td>
<td>20</td>
<td>250</td>
<td>B 332</td>
<td>91*** (Note 4)</td>
<td>91</td>
<td>B 332</td>
</tr>
<tr>
<td>Mound</td>
<td>0.855</td>
<td>20</td>
<td>T, SWR</td>
<td>20</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>Oak Ridge</td>
<td>0.3013</td>
<td>30</td>
<td>3027, 3038, 5505</td>
<td>30</td>
<td>30</td>
<td>3027</td>
</tr>
<tr>
<td>Sandia</td>
<td>6.7</td>
<td>5</td>
<td>NMSF</td>
<td>5</td>
<td>5</td>
<td>NMSF</td>
</tr>
</tbody>
</table>

* PNNL had 254 packages of metal/oxide/residues in addition to the 350 shown for PFP.

** The major holdings are about 2,600 containers of metals/oxides.

*** Material in excess of programmatic needs.

Notes:
1. Material storage consolidated to listed locations.
2. 350 in original Implementation Plan was a rounded number.
3. See Section 5.2.5.
4. Programmatic activity has generated new material and/or used some material which was in the original program, e.g., the Immobilization Program used some material for testing.

94-1 Implementation Plan: Revision 3
Table 5.1.2-2: Plutonium Oxides (> 50 % Assay)

<table>
<thead>
<tr>
<th>Site</th>
<th>Original SNM Inventory (kg)</th>
<th>Original Number of Items</th>
<th>Original Locations</th>
<th>Adjusted Number of Items (See Notes)</th>
<th>Remaining to be Stabilized as of 3/00</th>
<th>Remaining Items' Location(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanford</td>
<td>1,500</td>
<td>2,500</td>
<td>PFP, PUREX, PNNL*</td>
<td>2,611^2</td>
<td>2,611</td>
<td>PFP</td>
</tr>
<tr>
<td>Los Alamos</td>
<td>721</td>
<td>2,000</td>
<td>TA-55, CMR, TA-18</td>
<td>451^3</td>
<td>451</td>
<td>n/a</td>
</tr>
<tr>
<td>Savannah River</td>
<td>650</td>
<td>550</td>
<td>FB-Line, HB-Line, 235F, SRTC</td>
<td>800^4</td>
<td>800</td>
<td>FB-Line, 235F</td>
</tr>
<tr>
<td>Argonne-West</td>
<td>**</td>
<td>**</td>
<td>ZPRR, FMF, 752</td>
<td>**</td>
<td>**</td>
<td>ZPRR, FMF, 752</td>
</tr>
<tr>
<td>Argonne-East</td>
<td>0.48</td>
<td>695</td>
<td>200, 306, 315</td>
<td>695</td>
<td>695</td>
<td>205, 212, 315</td>
</tr>
<tr>
<td>Lawrence Livermore</td>
<td>102</td>
<td>154</td>
<td>B 332</td>
<td>92^5</td>
<td>92</td>
<td>B 332</td>
</tr>
<tr>
<td>Mound</td>
<td>28.132</td>
<td>107</td>
<td>T, SWAR</td>
<td>107</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>Oak Ridge</td>
<td>1.706</td>
<td>83</td>
<td>3027, 3038, 5505, 7920, 7930, 9204-3</td>
<td>83</td>
<td>83</td>
<td>3027, 3038, 5505</td>
</tr>
<tr>
<td>Lawrence Berkeley</td>
<td>0.014</td>
<td>354</td>
<td>70, 70A, 70-147A</td>
<td>354</td>
<td>354</td>
<td>70, 70A, 70-147A</td>
</tr>
<tr>
<td>Sandia</td>
<td>1.4</td>
<td>10</td>
<td>HCF, ACRR, NMSF</td>
<td>10</td>
<td>10</td>
<td>NMSF</td>
</tr>
</tbody>
</table>

Notes:
1. Material storage consolidated to listed locations.
2. Better split between oxides >50% and residues.
3. See Section 5.2.5.
4. More accurate inventory and characterization of material.
5. Programmatic activity has generated new material and/or used some material which was in the original program, e.g., the Immobilization Program used some material for testing.

* PNL had 254 packages of metal/oxide/residues.
** The major holdings are about 2,600 containers of metals/oxides.
*** Material in excess of programmatic needs.
5.1.3 Plutonium Residues and Mixed Oxides (< 50% assay)

Solid process residues are bulk materials contaminated with significant quantities of plutonium. Residues remaining to be stabilized include feedstock and materials-in-process to nuclear weapon fabrication and nuclear material production until fabrication ceased in 1989. The residues include materials such as impure oxides and metals, halide salts, combustibles, ash, dissolver heels, sludge, contaminated glass and metal, and other items. Table 5.1.3 describes the residue inventories at the various DOE sites.

The remaining items awaiting stabilization are not currently in a configuration suitable for long-term storage. The form of some materials, such as ash, poses a dispersibility hazard. Other materials, such as salts, may contain small particles of pyrophoric materials which create a worker safety hazard. Processing, treatment, stabilization, and/or repackaging of residues has already commenced at several sites. Capabilities to deal with the various types of residues exist at multiple facilities. Trade studies have been used extensively to examine and compare options for stabilization of various residue categories. Efforts are being made to integrate the stabilization plans throughout the complex to take advantage of the unique capabilities some sites offer.
Table 5.1.3: Summary of Plutonium Residue and Mixed Oxides (<50% Assay)

<table>
<thead>
<tr>
<th>Site</th>
<th>Original SNM Inventory (Kg)</th>
<th>Original Number of Items</th>
<th>Original Locations</th>
<th>Adjusted Number of Items or Amount (See Notes)</th>
<th>Number of Items or Amount Remaining to be Stabilized as of 3/00</th>
<th>Remaining Items' Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocky Flats</td>
<td>3,000</td>
<td>20,532</td>
<td>371, 559, 707, 771, 776/777, 779,991</td>
<td>20,532</td>
<td>9,958</td>
<td>371, 707</td>
</tr>
<tr>
<td>Hanford</td>
<td>1,500</td>
<td>5,000</td>
<td>PFP, PUREX, PNNL</td>
<td>4,034¹</td>
<td>3,977</td>
<td>PFP</td>
</tr>
<tr>
<td>Los Alamos</td>
<td>1,400</td>
<td>6,300</td>
<td>TA-55, CMR</td>
<td>5,900²</td>
<td>1,891</td>
<td>TA-55, CMR</td>
</tr>
<tr>
<td>Savannah River</td>
<td>Classified</td>
<td>1,306</td>
<td>235-F, FB-Line, SRTC</td>
<td>1,270³</td>
<td>925</td>
<td>235-F, FB-Line</td>
</tr>
<tr>
<td>Lawrence Livermore</td>
<td>35</td>
<td>182</td>
<td>B332</td>
<td>202⁴</td>
<td>202</td>
<td>B332</td>
</tr>
<tr>
<td>Mound</td>
<td>3</td>
<td>39</td>
<td>T Building</td>
<td>39</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>Argonne-East</td>
<td><1</td>
<td>12</td>
<td>T Building</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Oak Ridge</td>
<td>0.1</td>
<td>12</td>
<td>3027, 7930</td>
<td>12</td>
<td>12</td>
<td>3027, 7930</td>
</tr>
<tr>
<td>Lawrence Berkeley</td>
<td><1</td>
<td>250</td>
<td></td>
<td>250</td>
<td>250</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Adjusted split between residues <50% and oxides >50%.
2. Additional items were identified as needing stabilization.
3. More accurate inventory and characterization of material.
4. Programmatic activity has generated new material and/or used some material which was in the original program, e.g., the Immobilization Program used some material for testing.
5. Items reported in kilograms
5.1.4 Special Isotopes

The DOE manages inventories of a wide range of special transuranic isotopes, primarily derived as byproducts from previous defense reactor production and the chemical separation of large process streams of reactor targets. Special isotope inventories covered by the original 94-1 Implementation Plan are shown in Table 5.1.4 together with their current status. DOE production processes created quantities of plutonium-242, neptunium, americium, and curium solutions which were retained as feedstocks for the future production of heavy isotopes. As in the case of the plutonium solutions described earlier, continued storage of these materials in solution form poses an unacceptable risk, primarily due to potential for leakage and release to the environment. Stabilization of these materials to a solid form suitable for long-term storage has been completed in the case of plutonium-242 and is planned for neptunium and americium/curium solutions. Stabilization can be accomplished via conversion to a solid oxide form or via vitrification in a glass matrix. The Nuclear Materials Integration project is utilizing a systems approach to examine the life-cycle management of these materials.

Table 5.1.4: Special Isotopes Holdings

<table>
<thead>
<tr>
<th>Inventory</th>
<th>Location</th>
<th>Original Quantity</th>
<th>Current Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Americium-curium solution</td>
<td>Savannah River F-Canyon</td>
<td>14,400 L</td>
<td>Awaiting stabilization.</td>
</tr>
<tr>
<td>Pu-242 solution</td>
<td>Savannah River H-Canyon</td>
<td>13,300 L</td>
<td>Stabilization completed.</td>
</tr>
<tr>
<td>Np-237 solution</td>
<td>Savannah River H-Canyon</td>
<td>6,000 L</td>
<td>Awaiting stabilization.</td>
</tr>
<tr>
<td>Pu-238 solids with adverse packaging</td>
<td>Savannah River Building 235-F</td>
<td>14 containers</td>
<td>Stabilization completed.</td>
</tr>
<tr>
<td>Pu-238 materials in active programs</td>
<td>Los Alamos, Mound</td>
<td>A wide variety of container types</td>
<td>Management of excess materials being examined by Nuclear Materials Integration Program.</td>
</tr>
<tr>
<td>Wide inventory of in-use and small-mass items of other isotopes</td>
<td>Large number of DOE, university, medical, and industrial sites</td>
<td>A wide variety of container types</td>
<td>Management of excess materials being examined by Nuclear Materials Integration Program.</td>
</tr>
</tbody>
</table>
5.1.5 Highly-enriched Uranium Stabilization Requirements

The Department currently manages significant quantities of enriched uranium in a number of configurations, including materials left in a production cycle when the production facilities were shut down. Much of the highly-enriched uranium (HEU) inventory included in the original implementation plan has been stabilized, as shown in Table 5.1.5 and described in chapter 4. For the remaining HEU to be stabilized, Savannah River plans to blend the HEU solutions at that site into a low enriched uranium configuration suitable for use as commercial reactor fuel. Details of this project can be found in the Off-Specification Fuel Project Plan. HEU solids remaining in the Oak Ridge Molten Salt Reactor Experiment will be removed and turned over to be managed under the uranium-233 Safe Storage Program Execution Plan.

Table 5.1.5: Highly-enriched Uranium Inventory Summary

<table>
<thead>
<tr>
<th>Site</th>
<th>Type of Material</th>
<th>Original Quantity</th>
<th>Original Location</th>
<th>Quantity Stabilized as of 3/00</th>
<th>Remaining Materials Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocky Flats</td>
<td>HEU Solutions</td>
<td>2,700 L containing 569 kg of U-235</td>
<td>Bldg 886</td>
<td>2,700 L</td>
<td>All solutions shipped to commercial processor, converted to oxide, and now stored at Y-12</td>
</tr>
<tr>
<td>Savannah River</td>
<td>HEU Solution</td>
<td>230,000 L</td>
<td>Bldg 221-H and Outside Facilities</td>
<td>0</td>
<td>Bldg 221-H and Outside Facilities</td>
</tr>
<tr>
<td>Oak Ridge</td>
<td>HEU Solids</td>
<td>Classified</td>
<td>K-25 and K-29*</td>
<td>All deposits identified for stabilization are completed</td>
<td>Packaged for interim storage in Y-12 awaiting final disposition</td>
</tr>
<tr>
<td>Oak Ridge</td>
<td>U-233 Solids and UF₆ Gas</td>
<td>37.6 kg uranium (84% U-233, 3% U-235)</td>
<td>MSRE</td>
<td>22.7 kg of uranium in the form of UF₆ adsorbed on NaF traps and removed</td>
<td>MSRE</td>
</tr>
</tbody>
</table>

* Additional large deposits of low enriched uranium in Building K-29 were selected for removal and were added to the scope of the ETTP Deposit Removal Project.
5.1.6 Spent Nuclear Fuel

Spent Nuclear Fuel (SNF) is nuclear fuel or targets containing uranium, plutonium, or thorium withdrawn from a nuclear reactor or other neutron irradiation facility following irradiation, the constituent elements of which have not been separated by chemical reprocessing. These materials include essentially intact fuel and disassembled or damaged units and pieces; irradiated reactor fuel, production targets, slugs, and blankets presently in storage or that will be accepted for storage at DOE facilities; and debris, sludge, small pieces of fuel, and cut up irradiated fuel assemblies awaiting evaluation of their waste classification. In Recommendation 94-1, the Board highlighted concerns involving SNF located in the K-East Basin at the Hanford Site, the CPP-603 Basin at the Idaho National Engineering and Environmental Laboratory, and the processing canyons and reactor basins at the Savannah River Site. This material, described in Table 5.1.6, represents a subset of the total inventory of spent nuclear fuel managed under the DOE SNF Program. At Hanford, the only material covered by 94-1 is SNF and sludge in the K-East and K-West Basins. At Idaho, SNF in the CPP-603 Basin comprised the 94-1 inventory and has all been removed. At Savannah River Site, Mark-31 targets (now stabilized) and Mark-16 and -22 SNF made up the 94-1 inventory.

Table 5.1.6: 94-1 Spent Nuclear Fuel Inventory Summary

<table>
<thead>
<tr>
<th>Site</th>
<th>Original MTHM</th>
<th>Original Volume (m³)</th>
<th>MTTHM Requiring Stabilization as of 4/00</th>
<th>Volume Requiring Stabilization (m³) as of 4/00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanford</td>
<td>2,132</td>
<td>256</td>
<td>2,132</td>
<td>256</td>
</tr>
<tr>
<td>Idaho</td>
<td>2.9*</td>
<td>64.4*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Savannah River</td>
<td>154**</td>
<td>83.5**</td>
<td>5</td>
<td>43</td>
</tr>
</tbody>
</table>

* The February 1995 94-1 Implementation Plan showed the values of 261 MT and 702 m³ for the total SNF inventory at Idaho. The above values represent the 94-1 portion of that inventory.

** The February 1995 94-1 Implementation Plan showed the values of 206 MT and 164 m³ for the total SNF inventory at SRS. The above values represent the 94-1 portion of that inventory.

The 94-1 SNF materials pose a risk to workers and the environment due to their prolonged storage in facilities and conditions that were originally intended to provide temporary storage. The structural integrity of these facilities in the case of a seismic event and the potential for release of radioactivity to the environment are of primary concern. Stabilization is being accomplished by dissolving damaged and at-risk SNF where facilities exist to carry out that operation, transferring SNF to a modern underwater storage facility, and by designing and constructing dry storage facilities at other locations. Dissolution of the Mark-16 and -22 SNF at Savannah River Site will produce a projected 1,400,000 liters of additional HEU solution, which will be stabilized along with the site's pre-existing HEU solution inventory.
5.2 SITE SAFETY ISSUE RESOLUTION APPROACHES

5.2.1 Hanford

The commitments for stabilizing plutonium-bearing materials described in this section represent specific
disposition pathways for the various material types and their associated completion dates. In 1999, PFP
completed evaluation of all alternatives for the remaining 94-1 materials and included the path-forward for
each in the IPMP. This IPMP utilized a resource-loaded, systems engineering approach to develop a 94-1
materials stabilization schedule that provides a higher level of confidence in PFP's ability to meet its
stabilization commitments. This Implementation Plan incorporates the schedule developed during that
effort, including the incorporation of vault upgrades to support fully DOE-STD-3013-99 packaging
compliance (Addendum 1 to the IPMP).

Resolution Approach

Plutonium Solutions:

PFP currently stores approximately 430 items of plutonium-bearing solutions. These solutions are
stored in vented 10-liter containers. Approximately 100 of these items are polybottles stored in thin-
walled stainless steel containers. The remainder are in Product Receiver (PR) containers in which the
solutions are stored in thick-walled stainless steel vessels.

A magnesium hydroxide precipitation process is being installed at PFP to convert plutonium solutions
to a precipitate that will be processed through PFP's muffle furnaces for final stabilization and
packaging to meet the long-term storage standard. Detailed design of the new equipment has been
completed and procurement activities and facility modifications to implement this technology are
underway. PFP is pursuing an increase to the plutonium concentration in the feed solution to increase
the precipitation process throughput and shorten the stabilization period. A previously considered
stabilization technology, a production-scale vertical denitrification calciner, will be retained, though not
fully installed, as a potential backup option.

Solutions stabilization process development activities using the prototype vertical denitrification calciner
were restarted in September 1999. A limited volume of Pu solution was effectively stabilized during
this testing which will continue to support the use of the production calciner as a potential backup to
magnesium hydroxide precipitation. Additionally, Pacific Northwest National Laboratory and the PFP
laboratory initiated testing of the magnesium hydroxide precipitation process for PFP Pu solutions to
develop the optimum process necessary to achieve the most efficient stabilization of these materials.
During the testing of the prototype calciner and the magnesium hydroxide precipitation process 100
to 400 liters of plutonium solutions may be stabilized.

PFP has four general types of solutions. The largest group (~400 items) are nitric acid solutions.
These solutions range from product grade to very lean, impure solutions. These solutions will be
processed in the magnesium hydroxide precipitation process.

The second group of solutions is the approximately 15 chloride or chloride contaminated solution
items. It is anticipated that these solutions will be able to be processed in the same manner as the
nitric acid solutions.
The third group includes approximately 15 caustic solution items. These solutions may not be compatible with the current solution stabilization process. It is likely that some fraction of the plutonium has already precipitated out of these solutions. PFP will characterize these solutions to determine how to disposition them.

The last group is the one item of organic solution. This item will be effectively stabilized during laboratory testing at Hanford.

Spent Nuclear Fuel:

To address the urgent K-Basin issues, DOE and its regulators have developed a K-Basin recommended path forward to remove the fuel from the basins (a removal action under CERCLA), to stabilize it, and to place it in a safe, secure interim storage. The Department's decision concerning this action is consistent with the ROD from the EIS for Management of SNF from the K-Basins at the Hanford Site, Richland, Washington, which was issued in March 1996. The key elements of the K-Basins recommended path forward are described below:

- The K-Basins fuel and canisters will be retrieved from the current storage locations and cleaned, underwater, to remove corrosion products. The cleaned fuel will then be removed from the canisters, loaded into fuel baskets, transferred in baskets to multicanister overpacks (MCO) and vacuum dried at low temperature to remove free water. The cold vacuum dried spent fuel contained in the MCOs will be shipped to 200 East Area for interim storage in the Canister Storage Building (CSB).

- The K-Basin sludge, in addition to corrosion products generated during fuel cleaning, will be accumulated at the K-Basins and later retrieved and transferred to interim storage at the T-Plant Canyon located at the 200 west area, prior to processing and ultimate disposition. The sludge material will be managed as SNF while at K-Basins, and will be declared as waste, specifically remote-handled TRU, as soon as it leaves K-Basins.

- The CSB spent fuel storage configuration will provide multiple barriers to ensure safe long-term interim storage. The spent nuclear fuel will be sealed in multicanister overpacks after appropriate monitoring to ensure worker and public protection and to minimize SNF corrosion. The CSB has been designed and constructed to achieve nuclear safety equivalency comparable to Nuclear Regulatory Commission licensed fuel storage facilities.

Other activities that have been completed or are ongoing to improve the near term safety and environmental posture at the K-Basins include:

- Installation of seismic isolation barriers (e.g., cofferdams) between the basins and the discharge chute to isolate the basin from the suspected leakage site located in the unreinforced construction joint in the discharge chute is complete. This action minimizes the potential for environmental release of radioactive contaminants either directly through the leak into the ground or by airborne release, should the basin be drained as a consequence of a seismic event. Such events could also result in significant radiological exposure to personnel during recovery actions if the water is not replaced promptly.
An Unreviewed Safety Question (USQ) was declared concerning the existence of three 12-inch and five 4-inch drain valves in each basin. Corrective action plans, including engineered solutions have been implemented to resolve this USQ.

Performance of fuel and sludge characterization to assess fuel condition, chemical constituents, physical properties, fuel behavior during vacuum drying, and methods for treating sludge. The data will be used to support safety analyses for all planned activities and in particular to ensure safe long term storage.

A path forward for basin sludge that considers the probable differences between sludge in the fuel canisters and sludge lying on the basin floor has been developed. While the sludge contained in the fuel canisters is primarily the result of fuel corrosion, the vast majority of the sludge on the basin floor is known to consist of sand, metallic corrosion products, and concrete chips.

Establishment and maintenance of a formal Conduct of Operations program at the K-Basins to improve safety of ongoing operations.

Modification of essential facility systems necessary for continued safe operations and personnel protection, such as electrical, potable water, fire protection, and maintenance systems.

Reduction of personnel exposure in keeping with As-Low-As-Reasonably-Achievable (ALARA) practices by improving dose reduction measures and reducing the radioactive source term from cesium contaminated concrete basin walls and pipe runs.

Removal of debris from the K-Basins, e.g., unused and empty canisters, SNF storage racks and discarded tools. This waste will be cleaned and compacted, as necessary, prior to shipment to the Environmental Restoration Disposal Facility or to the solid waste management area to minimize the waste volume.

Improvement of water cleanup, including minimizing transuranic (TRU) loading of the ion exchange modules and providing redundant systems to ensure that adequate ion exchange capability is always available.

Preparations for operational readiness to support fuel removal activities.

A revised schedule has been developed to begin fuel and sludge removal by November 2000 and December 2002, respectively, and to complete fuel and sludge removal by July 2004 and August 2004, respectively. The revised schedule is incorporated in this Implementation Plan. This schedule accelerates the start and completion of sludge removal, while delaying the completion of fuel removal. Completion of the SNF Project is accelerated by 12 months over the 94-1 IP Revisions 1 and 2 commitments, therefore, reducing the risk to the environment sooner. A change package has been negotiated between the Environmental Protection Agency, Washington Department of Ecology, and DOE to establish enforceable milestones and target milestones for the project. These milestone dates have been incorporated into the project integrated schedule noted above. The SNF project schedule will be used as the basis for the 94-1 Implementation Plan commitments as well as the Tri-Party Agreement milestones.
Unalloyed Plutonium Metals:

In November 1998, a complex-supported workshop on PFP metals (350 items) was held in Denver to evaluate potential hazards associated with opening of the containers at PFP. Based on information gained from this workshop, it was determined that it would be acceptable to open the containers in the PFP oxide processing gloveboxes. Additionally, it was determined that storage of the metal after brushing in welded cans would be acceptable to support long-term storage. As a result, a decision was made in February 1999 to brush the PFP metals to remove the corrosion products and repack to meet the storage criteria. The removed corrosion products will be thermally stabilized in PFP muffle furnaces and packaged to meet the long-term storage standard. In April 2000, PFP completed a characterization of the metal inventory as part of the enhanced surveillance program consisting of weighing and radiography. Weighing of all items was performed to detect weight gain exceeding 5 grams. Approximately 5% of the metal inventory showed weight gains greater than 5 grams, indicating that air is leaking into some of the containers thus allowing the metal to oxidize. Radiography was conducted on the items exhibiting weight gains greater than 5 grams. As a result, five suspect items have been relocated to glovebox storage for immediate disposition. Disposition being considered is thermal stabilization as a feed shift to the existing muffle furnaces. Successful execution of the enhanced surveillance program, and subsequent disposition, adequately mitigated any near term risk associated with these suspect items. Of the items weighed, one additional item has been verified to be in contact with plastic. Processing of this item will occur on an expedited basis.

Alloyed Plutonium Metals:

PFP also stores approximately 125 plutonium alloys. Approximately 57% of the alloys in storage are plutonium aluminum alloys. These are considered stable, however they are not acceptable to the Materials Disposition Program. DOE is considering two options for managing these alloys: discard to WIPP and transfer to SRS for processing. Related programmatic and NEPA considerations are being evaluated.

PFP also has plutonium uranium alloys in storage and other miscellaneous alloys. Hydrides and/or nitrides may have formed on these alloys as discussed above resulting in similar storage conditions. PFP plans to disposition these alloys in the same manner as the unalloyed plutonium metals. Consideration will be given to discarding alloys to WIPP.

Plutonium Oxides and Mixed Oxides (> 30 wt% Pu+U):

PFP stores approximately 2,800 plutonium oxide items and 2,300 mixed plutonium-uranium oxide items (MOX). These oxides are being thermally stabilized in muffle furnaces and will be packaged to meet long-term storage criteria. Hanford successfully restarted thermal stabilization of oxides in two muffle furnaces in January 1999. Three additional furnaces were installed, and activated in March 2000. Additional high capacity furnaces are planned to be installed at PFP in fiscal year 2001. These and other initiatives, such as implementation of increased charge size, have the potential to accelerate schedules, but must be developed and integrated with the balance of plant activities.
Polycubes:

The path forward for stabilization of polycubes is a one-step thermal stabilization cycle in the muffle furnaces. DOE-RL consulted with the Office of Fissile Materials Disposition to ensure acceptability of this process with regard to planned disposition actions. This processing option will allow more cost-effective stabilization of the polycubes and an opportunity for acceleration of polycube stabilization completion. The resultant oxides will be packaged to DOE-STD-3013-99.

The muffle furnace stabilization option will provide significant benefits to PFP including: reduced dose to the operators, less complex equipment operations, utilization of existing equipment, and require only minor changes to the existing thermal stabilization processes. Start-up of polycube stabilization could be achieved as a feed shift in the muffle furnaces. Testing performed at PNNL and PFP on both simulated and actual polycubes have demonstrated that polycube stabilization in a one-step furnace operation can be performed safely and efficiently. Additional testing is underway to optimize the effective throughput.

The items containing polycube scraps and residues are planned to be stabilized using the same process as polycubes. As an alternative stabilization path forward, the scraps may be disposed of as TRU of TRU-Mixed similar to the other plutonium bearing residues.

Sources and Standards:

PFP stores approximately 200 items of sources and standards. The hazards are similar to those of oxides described above. Plutonium-beryllium sources will be shipped to LANL for dispositioning. All other sources and standards not required to support Hanford needs will be stabilized and packaged to DOE-STD-3013-99 using the same process as described for oxides above.

Residues (SS&C, Ash, Oxides < 30 wt% Pu+U):

PFP stores approximately 1250 items of SS&C, Ash and Oxides < 30 wt% plutonium and uranium. The SS&C and Oxides < 30 wt% plutonium and uranium are planned to be cemented at PFP and disposed of as TRU or TRU-Mixed waste per WIPP/WAC consistent with application of Section 308 of Public Law 105-245, 1998. The ash residues will be packaged in a pipe-and-go configuration for shipment to WIPP. PFP plans to conduct an evaluation of the use of pipe-and-go for all residue types. The pipe-and-go containers are being evaluated for shipping (some or all) this material, with or without cementation in order to accelerate schedule and reduce cost. If determined to be required, the calcium metal in the SS&C will be reacted with water in a controlled fashion prior to being cemented or packaged in the pipe-and-go containers.

Residues - Compounds:

PFP has four types of compounds in storage. This includes approximately 10 PuF$_3$ and PuF$_4$ items as well as one PuF$_3$-UF$_6$ item. Cementation and/or pipe-and-go disposition methods are being evaluated for these items.
PFP also has approximately 15 items of plutonium-zirconium scrap, plutonium-thorium scrap, or plutonium-beryllium scrap. These items are less than 30 wt% plutonium and will, therefore, be candidate items for cementation and discard.

Residues - Non-polycube Combustibles:

PFP has approximately 10 items of miscellaneous non-polycube combustibles. The path forward is to discard these items to WIPP per WIPP/WAC via cementation. If this proves impracticable, these items could be thermally stabilized using the same process as for polycubes. The resultant product could be either disposed of as TRU waste to WIPP or if the assay is >30 wt% plutonium and uranium, the material could be packaged to DOE-STD-3013-99.

Residues - Miscellaneous Plutonium-bearing Materials:

PFP has approximately 30 items of miscellaneous plutonium-bearing materials. The concern with these materials is the same as for plutonium oxides. Better characterization is required before definitive stabilization plans can be made. Two options are being considered. The plan is to discard these items to WIPP per WIPP/WAC via cementation. Pipe-and-go is being pursued for applicability in order to reduce cost and schedule. The resultant product may be either disposed of as TRU waste to WIPP or if the assay is greater than 30 wt% plutonium and uranium, the material could be packaged to meet the revised long-term storage standard.

Deliverables/Milestones

Plutonium Metals

Commitment Statement: The metal will be brushed and repackaged per the long-term storage standard. The resulting corrosion products will be thermally stabilized and packaged to meet the DOE long-term storage standard.

Responsibility: L. D. Romine, DOE-RL, Project Manager

Applicable Facilities: Plutonium Finishing Plant

Commitment Deliverable: Complete brushing and repackaging of metal inventory.

Due Date: March 2001

Plutonium Oxide and Mixed Oxide (> 30% Plutonium and Uranium)

Commitment Statement: Oxides will be stabilized, in muffle furnaces and packaged to meet the DOE long-term storage standard.

Responsibility: L. D. Romine, DOE-RL, Project Manager

Applicable Facilities: Plutonium Finishing Plant

Commitment Deliverable: Complete stabilization and packing of oxides (>30 wt% Pu/U).

Due Date: May 2004
Plutonium Solutions
Commitment Statement: Stabilization of solutions has been initiated through the utilization of the prototype denitrator calciner. This equipment is being utilized to develop design/process criteria for a production calciner which is currently being maintained as a backup to the primary solutions stabilization. The MgOH₂ precipitation process will be utilized for processing the majority of PFP solutions and precipitate will be oxidized in muffle furnaces and packaged to meet the DOE long-term storage standard.
Responsibility: L. D. Romine, DOE-RL, Project Manager
Applicable Facilities: Plutonium Finishing Plant
Commitment Deliverable: Complete stabilization and packaging of plutonium solutions.
Due Date: December 2001

Polycubes
Commitment Statement: Polycubes will be stabilized through existing muffle furnaces. The stabilized material will be packaged to meet the DOE long-term storage standard.
Responsibility: L. D. Romine, DOE-RL, Project Manager
Applicable Facilities: Plutonium Finishing Plant
Commitment Deliverable: Complete stabilization and packaging of polycubes.
Due Date: August 2002

Plutonium Alloys
Commitment Statement: The aluminum alloys will be sent to SRS for canyon processing or packaged for disposition to WIPP. The remaining alloys will be brushed and packaged at PFP to meet the DOE long-term storage standard.
Responsibility: L. D. Romine, DOE-RL, Project Manager
Applicable Facilities: Plutonium Finishing Plant
Commitment Deliverable: Ship aluminum alloys to SRS or package for disposition to WIPP. Brush and package remaining alloys at PFP.
Due Date: June 2001

Residues
Commitment Statement: PFP residues will be cemented and/or packaged in a pipe over-pack to be disposed of as TRU or TRU-mixed waste per WIPP/WAC criteria.
Responsibility: L. D. Romine, DOE-RL, Project Manager
Applicable Facilities: Plutonium Finishing Plant
Commitment Deliverable: Complete stabilization and packaging of residues.
Due Date: April 2004
<table>
<thead>
<tr>
<th>Commitment Statement</th>
<th>Responsibility</th>
<th>Applicable Facilities</th>
<th>Commitment Deliverable</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spent Nuclear Fuel</td>
<td>P. G. Loscoe, DOE-RL, Project Manager</td>
<td>KW-Basin Facility including the fuel retrieval, integrated water treatment and cask loadout systems; Cask Transportation System; Cold Vacuum Drying Facility; and Canister Storage Building.</td>
<td>Richland will begin fuel removal from K-West Basin. The Cold Vacuum Drying Facility and Canister Storage Building shall be ready to receive spent nuclear fuel. The spent nuclear fuel transport system shall be operable. The KW Basin spent nuclear fuel retrieval system shall begin retrieving, cleaning, and packaging spent nuclear fuel, and the First Multi-Canister Overpack of spent nuclear fuel will be loaded and transported to the Cold Vacuum Drying facility for processing.</td>
<td>November 2000</td>
</tr>
<tr>
<td></td>
<td>P. G. Loscoe, DOE-RL, Project Manager</td>
<td>K-West Basin Facility including the fuel retrieval, integrated water treatment and cask loadout systems; Cask Transportation System; Cold Vacuum Drying Facility; and Canister Storage Building.</td>
<td>Richland will complete fuel removal from the K-West Basin. This interim milestone will be complete when all spent nuclear fuel has been removed from K-West Basin. It is understood that additional fuel fragments may be discovered during removal of the sludge.</td>
<td>December 2002</td>
</tr>
<tr>
<td></td>
<td>P. G. Loscoe, DOE-RL, Project Manager</td>
<td>KE-Basin Facility including the fuel retrieval, integrated water treatment and cask loadout systems; Cask Transportation System; Cold Vacuum Drying Facility; and Canister Storage Building.</td>
<td>Richland will begin fuel removal from K-East Basin. The KE Basin spent nuclear fuel retrieval system shall begin retrieving, cleaning, and packaging spent nuclear fuel, and the First Multi-Canister Overpack of spent nuclear fuel from K-East Basin will be loaded and transported to the Cold Vacuum Drying facility for processing.</td>
<td>December 2002</td>
</tr>
</tbody>
</table>
Commitment Statement: Richland will begin sludge removal from K-Basins. DOE shall complete and approve K-East sludge removal definitive design documents, all associated construction, and readiness assessments, and initiate removal of sludge from the Basin.

Responsibility: P. G. Loscoe, DOE-RL, Project Manager

Applicable Facilities: K-East Basin Facility including sludge removal system; Sludge Transport System; and Unloading System at the T-Plant Facility.

Commitment Deliverable: Begin sludge removal from the K-Basins.

Due Date: December 2002

Commitment Statement: Richland will complete fuel removal from K-East Basin. This interim milestone will be complete when all spent nuclear fuel has been removed from the K-East Basin. It is understood that additional fuel fragments may be discovered during removal of the sludge.

Responsibility: P. G. Loscoe, DOE-RL, Project Manager

Applicable Facilities: K-East Basin Facility including the fuel retrieval, integrated water treatment and cask loadout systems; Cask Transportation System; Cold Vacuum Drying Facility; and Canister Storage Building.

Commitment Deliverable: Complete fuel removal from the K-East Basin.

Due Date: July 2004

Commitment Statement: Richland will complete sludge removal from the K-Basins.

Responsibility: P. G. Loscoe, DOE-RL, Project Manager

Applicable Facilities: K-East Basin Facility including sludge removal system; Sludge Transport System; and Unloading System at the T-Plant Facility.

Commitment Deliverable: Complete sludge removal from K-Basins.

Due Date: August 2004
5.2.2 Savannah River Site

In March 2000, the Savannah River Site (SRS) completed a sitewide reprioritization and rebaselining with the intent of establishing an achievable schedule for completing all stabilization activities. The results of that effort are discussed below.

Uranium Solutions:

DOE has entered into a Memorandum of Understanding with the Tennessee Valley Authority (TVA) for the conversion of at least 30 t of off-specification DOE highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel for TVA power reactors. The 230,000 L of Savannah River HEU solutions (and Mk-16/22 spent nuclear fuel) are part of that project. The Department is planning to blend down the solutions to less than 5 percent U-235 and then transfer them to a TVA-designated commercial fuel fabricator for conversion to power reactor fuel.

DOE is continuing with its primary path forward to blend down HEU materials for delivery to TVA. DOE expects an agreement with TVA to be finalized in the next few months.

SRS continues to evaluate the backup contingency for stabilization of HEU solutions (i.e., blending to less than one percent uranium-235 and conversion to a solid) in the event that the anticipated TVA arrangement cannot be negotiated successfully. This evaluation includes identification of preliminary activities for blending the pre-existing (and Mk-16/22) uranium solution down to less than 1% enrichment, for restart of FA-Line, and for determining if there is a less expensive commercial alternative for conversion to oxide.

Americium/Curium Solution:

Several methods for stabilizing the americium-curium solutions were evaluated during the development of the IMNM EIS. The vitrification alternative was selected in the IMNM EIS ROD (December 12, 1995). Basically, the vitrification alternative is to encapsulate the Am/Cm in a glass form.

An Americium/Curium Demonstration Project for vitrifying the Am/Cm solution began in 1995 and the Americium/Curium Vitrification Project was initiated in FY 1996, but development of a suitable melter proved to be a more formidable problem than originally estimated. As a result, the project had to be reassessed. Design and construction activities related to vitrification were curtailed in the Fall of 1997, and the Research and Development (R&D) activities were reformulated to focus on a different method to achieve vitrification. The Resistance-Heated Bushing Melter: Continuous Feed, Semi-continuous Pour method has subsequently been replaced with an Induction-Heated Cylindrical Melter: Batch Feed-Batch Pour method. This R&D was completed, and design basis data/information has been used to revise the Design Basis Documents and rebaseline the project. Detail design restarted in the Spring of 1999, and the new cost and schedule baseline was approved in February 2000.

Neptunium Solutions:

In the fourth Supplemental ROD to the IMNM EIS, issued on October 31, 1997, DOE selected processing the neptunium solution in H-Canyon to remove decay products and other material that
would interfere with subsequent conversion steps followed by transfer to HB-Line for conversion to a low-fired oxide. The Office of Nuclear Energy, Science and Technology is preparing a Programmatic Environmental Impact Statement for Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility that will include analyses concerning domestic production of Pu-238. If the subsequent Record of Decision (currently expected to be issued in January 2001) selects a site for domestic production of Pu-238 or a site for storage of Np-237 oxide, the Np oxide product from HB-Line will be packaged to meet or exceed shipping requirements and be shipped to the selected site. Alternatively, the oxide will be stored on-site pending disposition.

During the neptunium solution stabilization, Savannah River also plans to solidify any neptunium recovered during stabilization of plutonium residues and mixed oxides, irradiated fuels, and from dissolving the unirradiated neptunium-aluminum reactor targets that are currently stored at the site.

Plutonium Solutions:

The Interim Management of Nuclear Materials Environmental Impact Statement identifies a preferred alternative for stabilization of the Pu-239 solutions in the H-Canyon. The action indicated in the fourth Supplemental Record of Decision is to process the solutions to oxide in the H-Canyon and HB-Line facilities. The solution will undergo processing in the H-Canyon as necessary to remove impurities that would interfere with the conversion-to-oxide process in HB-Line. The plutonium oxide will be placed in temporary storage until the capability is available to high fire the oxide and package it in accordance with the DOE storage standard.

Based on progress to date on facility restarts, and incorporation of lessons learned from six successful Operational Readiness Reviews and eight readiness assessments, H-Canyon plutonium solution stabilization is expected to begin in December 2001 and be completed in December 2002.

Plutonium Metal and Oxide:

A capability at SRS to repackage plutonium to meet the metal and oxide storage standard will be established. Equipment capable of high firing plutonium oxide and packaging plutonium metal and oxide in accordance with DOE-STD-3013 will be installed in existing building 235-F. Pre-conceptual design evaluations for the modifications to building 235-F have been completed with the conclusion that the plutonium stabilization and packaging capability can be provided in building 235-F. Because of the preliminary nature of the pre-conceptual efforts, it is not possible to provide a definitive project and operational schedule at this time. Conceptual design and 35% detail design for the building 235-F project must be completed before the final project and operational baseline dates are established. It is expected that the final project baselines will be established in FY 2002. We expect that as further design continues the current uncertainties will be resolved with a goal of accelerating project completion.

While the SRS has established the capability to package plutonium metal into the inner 3013 container (the FB-Line Bagless Transfer System), and all available plutonium metal has been so packaged, the greatest risk reduction for SRS plutonium storage will be achieved when plutonium oxides are packaged in accordance with the long-term storage criteria (DOE-STD-3013-99). Nonetheless, in
developing the Building 235-F stabilization and packaging project design, DOE will evaluate the option of establishing the outer-3013 container packaging capability in advance of completing the entire project. DOE will establish the outer 3013 capability early, and establish appropriate milestones for the project and completion of the 3013 packaging of plutonium metals, if it can be established without impacting the earliest final completion of the 235-F project. The SRS will continue to monitor the progress of both the Hanford and Rocky Flats stabilization and packaging projects. Lessons learned during completion, startup and operation of those projects will be factored into the design activities at the SRS and alternatives will be evaluated that might accelerate establishing the DOE-STD-3013-99 capabilities at the SRS.

Rocky Flats Classified Plutonium Metal:

DOE decided in the ROD for the Storage and Disposition of Weapons-Useable Fissile Materials Final Programmatic EIS (January 1997) to relocate all RFETS non-pit weapons-useable plutonium, to include approximately 200 containers of classified plutonium metal, to SRS pending selection of SRS as the immobilization site. DOE selected the SRS in the ROD for the Surplus Plutonium Disposition EIS (January 2000) as the site for immobilization disposition. The classified plutonium metal at RFETS is being shipped to SRS where it will be recast in FB-Line and packaged in accordance with DOE-STD-3013.

Residues:

For residues, the first IMNM EIS ROD, issued December 12, 1995, selected stabilization by dissolving material in F- or H-Area, purifying the plutonium in solution, and transferring the residual solution to FB- or HB-Line for conversion to a metal or oxide. The first IMNM EIS ROD also included the additional stabilization options of improving storage and vitrifying the materials in F-Canyon. The fourth Supplemental ROD issued October 31, 1997, added processing and storage for vitrification in the DWPF as another stabilization method.

The sand, slag and crucible and DU/Pu have been dissolved in F-Canyon, and the plutonium sweepings have been dissolved using both F-Canyon and HB-Line Phase I. The resultant solutions in F-Canyon will be converted to metal in FB-Line and packaged in BTS containers. The resultant solution in HB-Line will be converted to oxide using HB-Line Phase II. The miscellaneous plutonium metal has been recast in FB-Line and packaged in BTS containers.

Where material and packaging properties are characterized incompletely, a program has been instituted to select the required stabilization process. Methods used include NDA using digital radiography equipment installed in March 1997, and selected sampling of containers using existing gloveboxes with modification. Full material characterization capability began in April 1999.

Current plans call for the repackaging of all existing high-grade, mixed plutonium solids (>100 g/can) to meet the metal and oxide storage standard. Other possibly unstable residues which are slated for processing include the mixed, low-grade solids. The material processed in HB-Line will be transformed to oxide, while the residues processed in F-Area will be converted to metal. Ultimately, the plutonium oxides will be high fired and the plutonium metals and oxides will be packaged in accordance with DOE-STD-3013.
Rocky Flats Scrub Alloy:

In accordance with the first RFETS Residue EIS ROD (issued November 25, 1999), the existing scrub alloy at RFETS has been shipped to SRS where it will be dissolved in F-Canyon. The plutonium recovered will be processed through F-Canyon and transferred to FB-Line for conversion to metal and packaging for storage.

Hanford Materials:

The Department is investigating options for off-site stabilization (or disposition) of some of Hanford’s 94-1 materials. A portion of these materials, plutonium-aluminum alloys, may be sent to the SRS for canyon processing. If the decision is made to send this material to the SRS it would be dissolved in F-Canyon, transferred to FB-Line for conversion to metal, and ultimately packaged in accordance with DOE-STD-3013.

Spent Nuclear Fuel:

Based upon the IMNM EIS ROD (February 8, 1996), dissolution of SRS Mark-16 and Mark-22 HEU SNF began in July 1997. The HEU SNF is being dissolved in the H-Canyon consistent with past practice. The resulting enriched uranium solutions are now transferred to the enriched uranium storage tank in the H-Area A-Line facility for temporary storage. Miscellaneous aluminum-clad targets and fuels will also be dissolved, and the resultant solutions containing HEU may be blended down and transferred to TVA, similar to the existing HEU solution and solutions resulting from dissolution of the Mk-16/22 spent fuel. The remainder will be transferred to the Waste Tank Farm.

Deliverables/Milestones

(Note: In order to accomplish the SRS stabilization activities on the new schedule described below for FY 2001 and beyond, the Department must work with the appropriate parties to realign its FY 2001 budget with the new SRS sitewide baseline. An additional 6-month to 12-month delay could be required if the FY 2001 realignment of funds is not accomplished, requiring the Department to request a reprogramming.)

Plutonium Solutions

Commitment Statement: Begin converting pre-existing H-Canyon Pu-239 solution to oxide
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
Applicable Facilities: H-Canyon and HB-Line
Commitment Deliverable: Begin operating HB-Line Phase II and conversion of the Pu-239 solution to oxide
Due Date: December 2001

Commitment Statement: Complete conversion of pre-existing H-Canyon Pu-239 solution to oxide
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
<table>
<thead>
<tr>
<th>Applicable Facilities</th>
<th>H-Canyon and HB-Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commitment Deliverable</td>
<td>34,000 liters of H-Canyon Pu-239 solutions converted to oxide.</td>
</tr>
<tr>
<td>Due Date</td>
<td>December 2002</td>
</tr>
</tbody>
</table>

Metal and Oxide >30% Plutonium

<table>
<thead>
<tr>
<th>Commitment Statement</th>
<th>Resume Bagless Transfer System operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsibility</td>
<td>Charles A. Hansen, DOE-SR, Assistant Manager</td>
</tr>
<tr>
<td>Applicable Facilities</td>
<td>FB-Line</td>
</tr>
<tr>
<td>Commitment Deliverable</td>
<td>Resume packaging plutonium metal into BTS containers (inner 3013 containers)</td>
</tr>
<tr>
<td>Due Date</td>
<td>June 2000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commitment Statement</th>
<th>Begin conceptual design for 235-F Stabilization subproject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsibility</td>
<td>Charles A. Hansen, DOE-SR, Assistant Manager</td>
</tr>
<tr>
<td>Applicable Facilities</td>
<td>N/A</td>
</tr>
<tr>
<td>Commitment Deliverable</td>
<td>Begin conceptual design for the subproject</td>
</tr>
<tr>
<td>Due Date</td>
<td>July 2000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commitment Statement</th>
<th>Complete conceptual design for 235-F Stabilization subproject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsibility</td>
<td>Charles A. Hansen, DOE-SR, Assistant Manager</td>
</tr>
<tr>
<td>Applicable Facilities</td>
<td>N/A</td>
</tr>
<tr>
<td>Commitment Deliverable</td>
<td>Complete conceptual design for the subproject</td>
</tr>
<tr>
<td>Due Date</td>
<td>January 2001 - April 2001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commitment Statement</th>
<th>Begin detail design for 235-F Stabilization subproject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsibility</td>
<td>Charles A. Hansen, DOE-SR, Assistant Manager</td>
</tr>
<tr>
<td>Applicable Facilities</td>
<td>N/A</td>
</tr>
<tr>
<td>Commitment Deliverable</td>
<td>Begin detail design for the subproject</td>
</tr>
<tr>
<td>Due Date</td>
<td>March 2001 - October 2001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commitment Statement</th>
<th>Begin construction for 235-F Stabilization subproject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsibility</td>
<td>Charles A. Hansen, DOE-SR, Assistant Manager</td>
</tr>
<tr>
<td>Applicable Facilities</td>
<td>235-F</td>
</tr>
<tr>
<td>Commitment Deliverable</td>
<td>Begin construction activities for the subproject</td>
</tr>
<tr>
<td>Due Date</td>
<td>July 2002 - April 2003</td>
</tr>
</tbody>
</table>

| Commitment Statement | Begin operation of equipment for high firing and packaging plutonium in accordance with DOE-STD-3013 |

94-1 Implementation Plan: Revision 3
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
Applicable Facilities: 235-F
Commitment Deliverable: Begin stabilizing and packaging plutonium for long-term storage
Due Date: January 2005 - January 2007

Commitment Statement: Complete stabilization and packaging of all plutonium at SRS to DOE-STD-3013
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
Applicable Facilities: 235-F
Commitment Deliverable: All pre-existing SRS plutonium metal and oxide, and plutonium metal and oxide resulting from stabilization of all material within the April 2000 scope of the SRS stabilization program, stabilized and packaged in accordance with DOE-STD-3013
Due Date: June 2006 - June 2008

Residues <30% Plutonium

Commitment Statement: Resume HB-Line dissolution of SRS residues
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
Applicable Facilities: HB-Line
Commitment Deliverable: Resume operation of HB-Line Phase I and dissolution of SRS plutonium residues
Due Date: September 2000

Commitment Statement: Begin converting SRS residue solution to oxide
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
Applicable Facilities: HB-Line
Commitment Deliverable: Begin operation of HB-Line Phase II to convert solution from dissolution of pre-existing SRS plutonium residues to oxide
Due Date: January 2003

Commitment Statement: Complete dissolution of SRS pre-existing plutonium residues
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
Applicable Facilities: HB-Line, FB-Line and H-Canyon
Commitment Deliverable: All SRS plutonium residues from May 1994 inventory dissolved
Due Date: September 2005

Special Isotopes

Commitment Statement: Complete Am/Cm Vitrification Project Design
<table>
<thead>
<tr>
<th>Commitment Statement</th>
<th>Responsibility</th>
<th>Applicable Facilities</th>
<th>Commitment Deliverable</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager</td>
<td>N/A</td>
<td>Complete design for the Project</td>
<td>November 2001</td>
<td></td>
</tr>
<tr>
<td>Commitment Statement: Delivery of in-cell vitrification equipment</td>
<td>Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager</td>
<td>N/A</td>
<td>Receive in-cell Am/Cm vitrification equipment from vendor</td>
<td>May 2002</td>
</tr>
<tr>
<td>Commitment Statement: Complete construction for Am/Cm Vitrification Project</td>
<td>Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager</td>
<td>F-Canyon/Multi-Purpose Processing Facility</td>
<td>Complete MPPF construction activities</td>
<td>October 2003</td>
</tr>
<tr>
<td>Commitment Statement: Begin stabilization of Am/Cm solution</td>
<td>Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager</td>
<td>F-Canyon/Multi-Purpose Processing Facility</td>
<td>Begin pre-treatment of the May 1994 inventory of Am/Cm solution stored in F-Canyon</td>
<td>October 2004</td>
</tr>
<tr>
<td>Commitment Statement: Begin vitrifying Am/Cm solution</td>
<td>Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager</td>
<td>F-Canyon/Multi-Purpose Processing Facility</td>
<td>Begin vitrifying May 1994 inventory of Am/Cm solution stored in F-Canyon</td>
<td>January 2005</td>
</tr>
<tr>
<td>Commitment Statement: Complete vitrifying Am/Cm solution</td>
<td>Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager</td>
<td>F-Canyon/Multi-Purpose Processing Facility</td>
<td>Vitrify May 1994 inventory of Am/Cm solution stored in F-Canyon</td>
<td>December 2005</td>
</tr>
<tr>
<td>Commitment Statement: Begin stabilization of Np-237 solution</td>
<td>Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Applicable Facilities: H-Canyon and HB-Line
Commitment Deliverable: Begin converting May 1994 inventory of Np-237 solution to oxide
Due Date: April 2005

Commitment Statement: Complete stabilization of Np-237 solution
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
Applicable Facilities: HB-Line and H-Canyon
Commitment Deliverable: Np solution converted to stable oxide
Due Date: December 2006

Uranium

Commitment Statement: Complete DOE/TVA interagency agreement for Off-Specification Fuel Program
Responsibility: Laura S. H. Holgate, DOE-HQ, NN-60
Applicable Facilities: N/A
Commitment Deliverable: Agreement signed by both DOE and TVA for transfer of uranium from DOE to TVA
Due Date: August 2000

Commitment Statement: Begin preliminary design for HEU Blend Down Project
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
Applicable Facilities: N/A
Commitment Deliverable: Begin detail design for project
Due Date: October 2000

Commitment Statement: Complete transfer of HEU solution to double-walled tank
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
Applicable Facilities: H-Canyon and HA-Line
Commitment Deliverable: Chemically refresh HEU solution stored outside H-Canyon and transfer to double-walled tank
Due Date: September 2001

Commitment Statement: Begin disposition of pre-existing enriched uranium solution and enriched uranium solution resulting from Mk-16/22 SNF dissolution
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
Applicable Facilities: H-Canyon, HA-Line
Commitment Deliverable: Begin isotopic blend down of HEU solution and transfer of low enriched uranium solution to TVA
Due Date: March 2003
Commitment Statement: Complete disposition of pre-existing enriched uranium solution and enriched uranium solution resulting from Mark-16/22 SNF dissolution
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
Applicable Facilities: H-Canyon, HA-Line
Commitment Deliverable: All enriched uranium solutions transferred to TVA
Due Date: September 2005

Spent Nuclear Fuel

Commitment Statement: Complete Phase 3 of H-Canyon restart
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
Applicable Facilities: H-Canyon
Commitment Deliverable: Restart operation of H-Canyon Second Uranium Cycle
Due Date: June 2000

Commitment Statement: Complete Mark-16/22 SNF dissolution
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
Applicable Facilities: H-Canyon
Commitment Deliverable: Mark-16/22 SNF dissolved
Due Date: March 2004

RFETS Metal and Scrub Alloy

Commitment Statement: Begin dissolution of RFETS scrub alloy
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
Applicable Facilities: F-Canyon
Commitment Deliverable: Begin dissolving RFETS scrub alloy
Due Date: April 2001

Commitment Statement: Complete dissolution of RFETS scrub alloy
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
Applicable Facilities: F-Canyon
Commitment Deliverable: Complete dissolving RFETS scrub alloy
Due Date: September 2001

Commitment Statement: Complete direct casting RFETS classified plutonium metal
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
Applicable Facilities: FB-Line
Commitment Deliverable: Complete recasting RFETS classified metal
Due Date: March 2006
5.2.3 Rocky Flats

Plutonium Solutions:

Solutions remain in Building 559 and Building 771. Building 559 continues to generate small quantities of low-level waste solutions due to analytical analysis to support Site closure. Building 771 continues to generate liquids from the tap and drain operations. Low-level solutions in Building 771, including holdup drained from piping systems and low-points, are being batched and transferred to Building 774 for cementation. Solutions from Building 771 and Building 559 activities that are compatible with the Caustic Waste Treatment System process will be stabilized in Building 371. The precipitate is being calcined and placed in temporary storage awaiting safe interim storage. The effluent is being transferred to Building 374 for further liquid waste processing. The impact of delays in Building 771 tap and draining will result in processing liquids in Building 371 through March 2002.

Experience gained during preparation and draining the first system in Building 771 indicated that flammable concentrations of hydrogen gas should be expected in all of the process system piping / components and appropriate safety controls should be implemented. This required expanding the hydrogen safety controls which were already applied to tanks to process piping systems. Activities in the process and laboratory areas are controlled to prevent ignition sources. Tools, vacuum pumps, drain-taps and other equipment used on systems that are to be drained are 'non-spark' by design. Also, draining preparations include venting and purging operations that assure hydrogen in the piping is below the lower explosive limit.

Building 771 continues to drain and remove piping systems. The two methods used to remove piping systems in Building 771 are a system-by-system (removal immediately after system has been drained) approach, and a recently added room-by-room approach. This new room-by-room approach (1) significantly increases worker industrial safety, (2) implements process efficiency lessons-learned from Building 779, and (3) reduces risk by accelerating draining of piping systems ahead of milestone schedules. The method that provides the greatest efficiency for risk reduction will be implemented. To minimize risk, each piping system is sampled to determine the system hydrogen generation rate. If the hydrogen concentration exceeds 25% of the lower explosive limit prior to pipe removal, the piping system will be removed immediately after draining (i.e., by implementing the system-by-system approach). The known leaking low points and joints are identified, contained, and controlled.

If hydrogen monitoring indicates that the piping system does not need to be removed immediately, the room-by-room approach is implemented. This method provides for partial removal of the process system to logical hold points or removal of the entire system. The piping may remain in place for up to 18 months after draining is completed, however, pipe removal is scheduled to be completed by December 2001. Prior to piping removal, the system is vacuum purged to ensure that any potential hydrogen is removed. The room-by-room approach minimizes the hazards associated with interference from other piping systems and improves industrial worker safety. Many piping systems are located several layers deep in the overheads that are located above gloveboxes and tanks. These piping systems are difficult to access; require intricate scaffolding to reach; and expose the workers to work in potentially unsafe conditions. The room-by-room approach allows piping to be removed from the bottom up, where piping is easily accessible without intricate scaffolding thereby substantially reducing fall, strain, and chemical exposure risk to the worker.
Both methods use characterization data gathered at the time of process system draining. If the room-by-room method is used, characterization data is saved and the piping left is tagged tying it back to the draining characterization data. This revised strategy supports site acceleration of process system draining and completion of work by December 2001.

The liquid stabilization program will be integrated with current efforts to meet the appropriate safe storage criteria (i.e., DOE-STD-3013-99 or Interim Safe Storage Criteria) for the plutonium solids generated as a result of the stabilization process. The solids generated will be initially packaged to meet site storage requirements until packaged to meet longer-term storage criteria. See Figure 5.2.3-1 for a simplified flow diagram.

Figure 5.2.3-1: Plutonium Solution Stabilization Process Flow Diagram

Metals and Oxides: In order to meet DOE-STD-3013-99, the long term storage standard, a packaging system with manual furnaces is being installed in Building 371. The system will feature the capability to brush loose oxide from metal, stabilize the oxide to meet the 0.5 weight percent moisture requirement, and package both metal and oxide in a welded stainless steel container, which is sealed within a second welded stainless steel container. This system will be available to start packaging metal or oxide into 3013 containers by October 2000.

The Department plans to accelerate the shipment of plutonium metal and oxides at Rocky Flats to the Savannah River Site (SRS) in order to support the goal of accelerating closure at Rocky Flats from 2010 to 2006. The K-Area at SRS has been modified to allow storage of Rocky Flats’ plutonium pending disposition. Shipments to SRS are planned to begin in November 2000 and complete in December 2002. Classified plutonium will not be packaged in a 3013 container before shipment to SRS. This material will be declassified by recasting in FB-Line at the SRS then ultimately put into a 3013 container.
Scrub alloy, an alloyed button of plutonium and americium from the scrubbing of salts from the molten salt extraction process, will be shipped to SRS for processing in F-Canyon. Processing of the scrub alloy at SRS allows the americium (a high worker exposure source) to be extracted to the high-level waste processing system and the by-product plutonium metal to be packaged to the long-term storage standard. Shipments of RFETS scrub alloy were completed in March 2000. See Section 5.2.2 for when this material will be stabilized.

Residues:

Plans for remaining residues requiring stabilization are as follows:

Salts: Remaining low risk salt residues will be blended to below the 10 weight percent plutonium concentration limit and repackaged into containers and placed in a pipe component to meet ISSC and WIPP standards. Salt repackaging will be complete by December 2000.

Wet Combustibles: Approximately 11,000 kg of wet combustible residues were originally classified as high risk. With the recharacterization of wet combustible residues from high hazard to low hazard, the need to perform any stabilization has been eliminated. Most of these low hazard wet combustible residues need only undergo a combination of sorting, blending, drying, repackaging, headspace gas sampling, and gas generation testing. A portion of these low hazard residues need only undergo real-time radiography, headspace gas sampling and gas generation testing. Operations that implement this simplified repackaging strategy commenced on October 6, 1998. All of these residues will meet the WIPP standards. The majority of these residues will not meet the ISSC (i.e., double metal containment boundaries), but will be made ISSC compliant or shipped to WIPP by May 2002. A high priority will be placed on shipping combustibles to WIPP, especially those that are non-ISSC compliant. In the interim, surveillance monitoring will be performed to ensure safe interim storage.

Ash: Remaining low risk ash (including graphite fines) will be blended as necessary to be below the 10 percent plutonium concentration limit, then repackaged into containers and placed in pipe component to meet ISSC and WIPP standards. Ash repackaging will be complete by December 2000.

Sand, Slag, and Crucible Residues: SS&C residues are currently being stored in a non-vented configuration. Surveillance will be performed until repackaging to WIPP standards commence. As required, any corrective actions to assure safe storage will be taken. SS&C residues will be blended, as required, to below the 10 weight percent plutonium concentration limit and placed in a pipe component to meet ISSC and WIPP standards. Repackaging operations will be complete by May 2002.

Dry/Repack Residues: Dry/repack residues do not require stabilization but must be repackaged to meet the ISSC and WIPP standard. Repackaging operations will be complete by May 2002.

Residues Summary: In light of characterization developments, robustness of the POC, termination of safeguards on residues, and further integrating site closure goals, the above modifications to the original Defense Nuclear Facilities Safety Board Recommendation 94-1
Implementation Plan have been made to reduce overall site risk and support Site closure while meeting original commitments of making all low risk residues ISSC compliant by May 2002. Pending shipment to WIPP, a post-stabilization monitoring program for all residues will be implemented to assure safe interim storage.

Deliverables/Milestones

Solutions

<table>
<thead>
<tr>
<th>Commitment Statement:</th>
<th>Drain eight additional actinide systems in B771.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsibility:</td>
<td>Henry F. Dalton, DOE-RFFO, Assistant Manager</td>
</tr>
<tr>
<td>Applicable Facilities:</td>
<td>Building 771</td>
</tr>
<tr>
<td>Commitment Deliverable:</td>
<td>Eight additional actinide systems drained in B771.</td>
</tr>
<tr>
<td>Due Date:</td>
<td>September 2000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commitment Statement:</th>
<th>Complete removal of all liquids in B771 (including all non-actinide systems).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsibility:</td>
<td>Henry F. Dalton, DOE-RFFO, Assistant Manager</td>
</tr>
<tr>
<td>Applicable Facilities:</td>
<td>Building 771</td>
</tr>
<tr>
<td>Commitment Deliverable:</td>
<td>Remove all liquids from B771.</td>
</tr>
<tr>
<td>Due Date:</td>
<td>December 2001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commitment Statement:</th>
<th>Complete processing all of the B771 liquids.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsibility:</td>
<td>Henry F. Dalton, DOE-RFFO, Assistant Manager</td>
</tr>
<tr>
<td>Applicable Facilities:</td>
<td>Building 371</td>
</tr>
<tr>
<td>Commitment Deliverable:</td>
<td>All B771 liquids processed.</td>
</tr>
<tr>
<td>Due Date:</td>
<td>March 2002</td>
</tr>
</tbody>
</table>

Metal and Oxide

<table>
<thead>
<tr>
<th>Commitment Statement:</th>
<th>Start packaging metal or oxide into 3013 containers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsibility:</td>
<td>Henry F. Dalton, DOE-RFFO, Assistant Manager</td>
</tr>
<tr>
<td>Applicable Facilities:</td>
<td>Building 371</td>
</tr>
<tr>
<td>Commitment Deliverable:</td>
<td>Start packaging metal or oxide into 3013 containers.</td>
</tr>
<tr>
<td>Due Date:</td>
<td>October 2000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commitment Statement:</th>
<th>Repackage all metal and oxides (except classified metal) into 3013 containers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsibility:</td>
<td>Henry F. Dalton, DOE-RFFO, Assistant Manager</td>
</tr>
<tr>
<td>Applicable Facilities:</td>
<td>Building 371</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Commitment Deliverable:</td>
<td>Repackage all metal and oxides (except classified metal) into 3013 containers.</td>
</tr>
<tr>
<td>Due Date:</td>
<td>May 2002</td>
</tr>
</tbody>
</table>

Residues

<table>
<thead>
<tr>
<th>Commitment Statement:</th>
<th>Complete repackaging of all salts.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsibility:</td>
<td>Henry F. Dalton, DOE-RFFO, Assistant Manager</td>
</tr>
<tr>
<td>Applicable Facilities:</td>
<td>Building 371</td>
</tr>
<tr>
<td>Commitment Deliverable:</td>
<td>Complete repackaging of all salts.</td>
</tr>
<tr>
<td>Due Date:</td>
<td>December 2000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commitment Statement:</th>
<th>Complete repackaging of all ash.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsibility:</td>
<td>Henry F. Dalton, DOE-RFFO, Assistant Manager</td>
</tr>
<tr>
<td>Applicable Facilities:</td>
<td>Buildings 707 and 371</td>
</tr>
<tr>
<td>Commitment Deliverable:</td>
<td>Complete repackaging of all ash.</td>
</tr>
<tr>
<td>Due Date:</td>
<td>December 2000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commitment Statement:</th>
<th>Complete repackaging all remaining low risk residues to meet ISSC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsibility:</td>
<td>Henry F. Dalton, DOE-RFFO, Assistant Manager</td>
</tr>
<tr>
<td>Applicable Facilities:</td>
<td>Buildings 707 and 371</td>
</tr>
<tr>
<td>Commitment Deliverable:</td>
<td>Complete repackaging all remaining low risk residues to meet ISSC.</td>
</tr>
<tr>
<td>Due Date:</td>
<td>May 2002.</td>
</tr>
</tbody>
</table>
5.4.4 Oak Ridge

The remaining materials at Oak Ridge in the 94-1/2000-1 scope are plutonium stored at ORNL in Building 3027 and uranium salt in the Molten Salt Reactor Experiment. Plans to complete stabilization of these materials are described in the following paragraphs.

Plutonium: The quantities of plutonium metals and oxides (>50% assay) and plutonium residues and mixed oxides (<50% assay) shown in Tables 3.2-1, 3.2-2, and 3.3-1 of the original Recommendation 94-1 Implementation Plan (March 1995) erroneously include both materials that continue to have a programmatic use and materials that are excess to programmatic needs. Only the excess materials, approximately 609 grams of Pu-238/Np-237 designated for transfer to the Department's Pu-238 Heat Source Program and approximately 708 grams of "other" plutonium identified as unneeded and packaged awaiting shipment to LLNL, are specifically 94-1 materials.

It is Oak Ridge's intention that it will meet its one 94-1/2000-1 plutonium commitment to, "Repackage all plutonium metals and oxides to meet the metal and oxides storage standard," by May 2002, by transferring the Pu-238/Np-237 to the Department's Pu-238 Heat Source Program when facilities are available to secure the material, and by shipping its other 94-1 material to LLNL where it will be integrated into and processed with that site's 94-1 Plutonium inventory. An agreement for shipping the material in FY 2000 is currently being negotiated with LLNL.

Molten Salt Reactor Experiment (MSRE): In February 1999, the DNFSB was advised of the technical inability to meet a February 1999 commitment for removal of the uranium deposit in the Molten Salt Reactor Experiment Auxiliary Charcoal Bed (ACB). It had been determined that the charcoal was not granular, as initially expected, and therefore, not amenable to the proposed vacuuming method of removal. Studies were conducted. Under the existing Federal Facility Agreement with the Tennessee Department of Environment and Conservation (TDEC) and the U.S. Environmental Protection Agency (EPA), an alternative which involves cutting off the top of the ACB and allows for aggressive techniques to break up the charcoal for subsequent vacuuming, was chosen as the selected remedy in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act. In accordance with these studies and agreements, the commitment for removal of the uranium deposit will be delayed until December 2000.

Since the removal of fuel and flush salts is a Comprehensive Environmental Response, Compensation and Liabilities Act (CERCLA) Interim Remedial Action, a Feasibility Study, proposed plan, and Record of Decision for the disposition of the fuel salt and the reactor flush salt were submitted to the regulators and the public for review and comment, and approved by the State of Tennessee Department of Environment and Conservation, and the Environmental Protection Agency. The site's MSRE 94-1 commitment will be completed when the fuel and flush salt are removed in accordance with the approved CERCLA Record of Decision.
Deliverables/Milestones

Metal and Oxide >30% Plutonium

Commitment Statement: Repackage all plutonium metals and oxides to meet the metal and oxide storage standard.
Responsibility: H. Clark
Applicable Facilities: ORNL, Building 3027
Commitment Deliverable: Dispose of unneeded plutonium at ORNL.
Due Date: May 2002

Uranium

Commitment Statement: Remove uranium deposit from Auxiliary Charcoal Bed.
Responsibility: M. Jugan
Applicable Facilities: ORNL, Building 7503
Commitment Deliverable: Remove uranium deposit from Auxiliary Charcoal Bed Cell.
Due Date: December 2000

Commitment Statement: Complete fuel and flush salt removal from MSRE.
Responsibility: M. Jugan
Applicable Facilities: ORNL, Building 7503
Commitment Deliverable: Remove fuel salt and flush salt from fuel drain tanks and flush tank.
Due Date: May 2002
Materials in the original 94-1 inventory at Los Alamos National Laboratory (LANL) included several high-risk residue material categories (sand, slag and crucible, hydroxide precipitates, silica filter residues, and cellulose clean-up rags). Los Alamos has completed stabilization of all high-risk vault items. The remaining high-risk inventory described in Table 5.4.5.1 is the Laboratory-wide inventory and includes uranium residues, Pu-238 residues, and Pu-242 residues. The capability to stabilize both high-risk HEU items and Pu-238 items is still under development; and as a result alternate disposition paths are being evaluated for these items. The high-risk Pu-242 items are actively being processed and are expected to be stabilized by the end of FY2000.

Current status of the remaining high-risk inventory is listed below:

Hydroxide Precipitates: The remainder 8 items in this category contain Pu-242 and Pu-238 and will not be processed in equipment dedicated for Pu-239 processing. LANL is processing Pu-242 items and is expected to complete the stabilization by end of FY2000. All Pu-242 items and Pu-238 items are located in glovebox enclosures and not in the vault.

Silica Solids: The non-Pu242 items were stabilized by chemical processing in April 1998. The plans for remaining Pu-242 items, located in glovebox enclosures, are to recover Pu from the residues when the aqueous nitrate operations become available.

Cellulose Cleanup Rags: The remaining two items will be either stabilized and actinide recovered or dispositioned through enhanced discard options.

The approach for completing plans to stabilize the remaining Los Alamos materials which are in the scope of Recommendation 2000-1 is described in the following paragraphs. Los Alamos is in the process of defining the inventory of accountable plutonium items that contain plutonium excess to national security needs. The baseline excess inventory will be finalized by June 15, 2000.

The priority and the schedule for stabilization and/or processing of items will be established through an integrated safety assessment approach addressing risk of items or batches of items. The approach will consider both legacy and newly generated items and will be based on a worker safety model derived and refined from the original modeling applied to the 94-1 inventory at the inception of the program. This risk-based prioritization scheme for remediating legacy materials will include personnel exposure as a risk factor. Worker exposure has a significant impact on vault management operations. Thus, the risk-prioritization scheme not only supports a broader risk-management perspective, but also directly includes factors that historically have been used to prioritize from an operational perspective.

When completed, this methodology will have established a technical basis for establishing material risks and priority of stabilization. The risk baseline and the processes for managing these risks will be established by July 31, 2000.

The categorization of original 94-1 inventory into excess and non-programmatic inventory is shown in Figure 1. In addition, Figure 1 illustrates disposition pathways for each category of material. The non-excess programmatic inventory which includes Pu242 plutonium, intrinsically sealed standards, isotope sales...
PFP also has approximately 15 items of plutonium-zirconium scrap, plutonium-thorium scrap, or plutonium-beryllium scrap. These items are less than 30 wt% plutonium and will, therefore, be candidate items for cementation and discard.

Residues - Non-polycube Combustibles:

PFP has approximately 10 items of miscellaneous non-polycube combustibles. The path forward is to discard these items to WIPP per WIPP/WAC via cementation. If this proves impracticable, these items could be thermally stabilized using the same process as for polycubes. The resultant product could be either disposed of as TRU waste to WIPP or if the assay is > 30 wt% plutonium and uranium, the material could be packaged to DOE-STD-3013-99.

Residues - Miscellaneous Plutonium-bearing Materials:

PFP has approximately 30 items of miscellaneous plutonium-bearing materials. The concern with these materials is the same as for plutonium oxides. Better characterization is required before definitive stabilization plans can be made. Two options are being considered. The plan is to discard these items to WIPP per WIPP/WAC via cementation. Pipe-and-go is being pursued for applicability in order to reduce cost and schedule. The resultant product may be either disposed of as TRU waste to WIPP or if the assay is greater than 30 wt% plutonium and uranium, the material could be packaged to meet the revised long-term storage standard.

Deliverables/Milestones

Plutonium Metals

Commitment Statement: The metal will be brushed and repackaged per the long-term storage standard. The resulting corrosion products will be thermally stabilized and packaged to meet the DOE long-term storage standard.

Responsibility: L. D. Romine, DOE-RL, Project Manager
Applicable Facilities: Plutonium Finishing Plant
Commitment Deliverable: Complete brushing and repackaging of metal inventory.
Due Date: March 2001

Plutonium Oxide and Mixed Oxide (> 30% Plutonium and Uranium)

Commitment Statement: Oxides will be stabilized, in muffle furnaces and packaged to meet the DOE long-term storage standard.

Responsibility: L. D. Romine, DOE-RL, Project Manager
Applicable Facilities: Plutonium Finishing Plant
Commitment Deliverable: Complete stabilization and packaging of oxides (>30 wt% Pu/U).
Due Date: May 2004
Plutonium Solutions

Commitment Statement:
Stabilization of solutions has been initiated through the utilization of the prototype denitrator calciner. This equipment is being utilized to develop design/process criteria for a production calciner which is currently being maintained as a backup to the primary solutions stabilization. The MgOH₂ precipitation process will be utilized for processing the majority of PFP solutions and precipitate will be oxidized in muffle furnaces and packaged to meet the DOE long-term storage standard.

Responsibility:
L. D. Romine, DOE-RL, Project Manager

Applicable Facilities:
Plutonium Finishing Plant

Commitment Deliverable:
Complete stabilization and packaging of plutonium solutions.

Due Date:
December 2001

Polycubes

Commitment Statement:
Polycubes will be stabilized through existing muffle furnaces. The stabilized material will be packaged to meet the DOE long-term storage standard.

Responsibility:
L. D. Romine, DOE-RL, Project Manager

Applicable Facilities:
Plutonium Finishing Plant

Commitment Deliverable:
Complete stabilization and packaging of polycubes.

Due Date:
August 2002

Plutonium Alloys

Commitment Statement:
The aluminum alloys will be sent to SRS for canyon processing or packaged for disposition to WIPP. The remaining alloys will be brushed and packaged at PFP to meet the DOE long-term storage standard.

Responsibility:
L. D. Romine, DOE-RL, Project Manager

Applicable Facilities:
Plutonium Finishing Plant

Commitment Deliverable:
Ship aluminum alloys to SRS or package for disposition to WIPP. Brush and package remaining alloys at PFP.

Due Date:
June 2001

Residues

Commitment Statement:
PFP residues will be cemented and/or packaged in a pipe over-pack to be disposed of as TRU or TRU-mixed waste per WIPP/WAC criteria.

Responsibility:
L. D. Romine, DOE-RL, Project Manager

Applicable Facilities:
Plutonium Finishing Plant

Commitment Deliverable:
Complete stabilization and packaging of residues.

Due Date:
April 2004
Spent Nuclear Fuel

<table>
<thead>
<tr>
<th>Commitment Statement</th>
<th>Responsibility</th>
<th>Applicable Facilities</th>
<th>Commitment Deliverable</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richland will begin fuel removal from K-West Basin. The Cold Vacuum Drying Facility and Canister Storage Building shall be ready to receive spent nuclear fuel. The spent nuclear fuel transport system shall be operable. The KW Basin spent nuclear fuel retrieval system shall begin retrieving, cleaning, and packaging spent nuclear fuel, and the First Multi-Canister Overpack of spent nuclear fuel will be loaded and transported to the Cold Vacuum Drying facility for processing.</td>
<td>P. G. Loscoe, DOE-RL, Project Manager</td>
<td>KW-Basin Facility including the fuel retrieval, integrated water treatment and cask loadout systems; Cask Transportation System; Cold Vacuum Drying Facility; and Canister Storage Building.</td>
<td>Begin fuel removal from the K-West Basin.</td>
<td>November 2000</td>
</tr>
<tr>
<td>Richland will complete fuel removal from the K-West Basin. This interim milestone will be complete when all spent nuclear fuel has been removed from K-West Basin. It is understood that additional fuel fragments may be discovered during removal of the sludge.</td>
<td>P. G. Loscoe, DOE-RL, Project Manager</td>
<td>K-West Basin Facility including the fuel retrieval, integrated water treatment and cask loadout systems; Cask Transportation System; Cold Vacuum Drying Facility; and Canister Storage Building.</td>
<td>Complete fuel removal from the K-West Basin.</td>
<td>December 2002</td>
</tr>
<tr>
<td>Richland will begin fuel removal from K-East Basin. The KE Basin spent nuclear fuel retrieval system shall begin retrieving, cleaning, and packaging spent nuclear fuel, and the First Multi-Canister Overpack of spent nuclear fuel from K-East Basin will be loaded and transported to the Cold Vacuum Drying facility for processing.</td>
<td>P. G. Loscoe, DOE-RL, Project Manager</td>
<td>KE-Basin Facility including the fuel retrieval, integrated water treatment and cask loadout systems; Cask Transportation System; Cold Vacuum Drying Facility; and Canister Storage Building.</td>
<td>Begin fuel removal from the K-East Basins.</td>
<td>December 2002</td>
</tr>
<tr>
<td>Commitment</td>
<td>Responsibility</td>
<td>Applicable Facilities</td>
<td>Commitment Deliverable</td>
<td>Due Date</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>-----------------------</td>
<td>------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Statement</td>
<td>P. G. Loscoe, DOE-RL, Project Manager</td>
<td>K-East Basin Facility including the fuel retrieval, integrated water treatment and cask loadout systems; Cask Transportation System; Cold Vacuum Drying Facility; and Canister Storage Building.</td>
<td>Complete fuel removal from the K-East Basin.</td>
<td>July 2004</td>
</tr>
</tbody>
</table>
5.2.2 Savannah River Site

In March 2000, the Savannah River Site (SRS) completed a sitewide reprioritization and rebaselining with the intent of establishing an achievable schedule for completing all stabilization activities. The results of that effort are discussed below.

Uranium Solutions:

DOE has entered into a Memorandum of Understanding with the Tennessee Valley Authority (TVA) for the conversion of at least 30 t of off-specification DOE highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel for TVA power reactors. The 230,000 L of Savannah River HEU solutions (and Mk-16/22 spent nuclear fuel) are part of that project. The Department is planning to blend down the solutions to less than 5 percent U-235 and then transfer them to a TVA-designated commercial fuel fabricator for conversion to power reactor fuel.

DOE is continuing with its primary path forward to blend down HEU materials for delivery to TVA. DOE expects an agreement with TVA to be finalized in the next few months.

SRS continues to evaluate the backup contingency for stabilization of HEU solutions (i.e., blending to less than one percent uranium-235 and conversion to a solid) in the event that the anticipated TVA arrangement cannot be negotiated successfully. This evaluation includes identification of preliminary activities for blending the pre-existing (and Mk-16/22) uranium solution down to less than 1% enrichment, for restart of FA-Line, and for determining if there is a less expensive commercial alternative for conversion to oxide.

Americium/Curium Solution:

Several methods for stabilizing the americium-curium solutions were evaluated during the development of the IMNM EIS. The vitrification alternative was selected in the IMNM EIS ROD (December 12, 1995). Basically, the vitrification alternative is to encapsulate the Am/Cm in a glass form.

An Americium/Curium Demonstration Project for vitrifying the Am/Cm solution began in 1995 and the Americium/Curium Vitrification Project was initiated in FY 1996, but development of a suitable melter proved to be a more formidable problem than originally estimated. As a result, the project had to be reassessed. Design and construction activities related to vitrification were curtailed in the Fall of 1997, and the Research and Development (R&D) activities were reformulated to focus on a different method to achieve vitrification. The Resistance-Heated Bushing Melter: Continuous Feed, Semi-continuous Pour method has subsequently been replaced with an Induction-Heated Cylindrical Melter: Batch Feed-Batch Pour method. This R&D was completed, and design basis data/information has been used to revise the Design Basis Documents and rebaseline the project. Detail design restarted in the Spring of 1999, and the new cost and schedule baseline was approved in February 2000.

Neptunium Solutions:

In the fourth Supplemental ROD to the IMNM EIS, issued on October 31, 1997, DOE selected processing the neptunium solution in H-Canyon to remove decay products and other material that...
would interfere with subsequent conversion steps followed by transfer to HB-Line for conversion to a low-fired oxide. The Office of Nuclear Energy, Science and Technology is preparing a *Programmatic Environmental Impact Statement for Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility* that will include analyses concerning domestic production of Pu-238. If the subsequent Record of Decision (currently expected to be issued in January 2001) selects a site for domestic production of Pu-238 or a site for storage of Np-237 oxide, the Np oxide product from HB-Line will be packaged to meet or exceed shipping requirements and be shipped to the selected site. Alternatively, the oxide will be stored on-site pending disposition.

During the neptunium solution stabilization, Savannah River also plans to solidify any neptunium recovered during stabilization of plutonium residues and mixed oxides, irradiated fuels, and from dissolving the unirradiated neptunium-aluminum reactor targets that are currently stored at the site.

Plutonium Solutions:

The *Interim Management of Nuclear Materials Environmental Impact Statement* identifies a preferred alternative for stabilization of the Pu-239 solutions in the H-Canyon. The action indicated in the fourth Supplemental Record of Decision is to process the solutions to oxide in the H-Canyon and HB-Line facilities. The solution will undergo processing in the H-Canyon as necessary to remove impurities that would interfere with the conversion-to-oxide process in HB-Line. The plutonium oxide will be placed in temporary storage until the capability is available to high fire the oxide and package it in accordance with the DOE storage standard.

Based on progress to date on facility restarts, and incorporation of lessons learned from six successful Operational Readiness Reviews and eight readiness assessments, H-Canyon plutonium solution stabilization is expected to begin in December 2001 and be completed in December 2002.

Plutonium Metal and Oxide:

A capability at SRS to repackage plutonium to meet the metal and oxide storage standard will be established. Equipment capable of high firing plutonium oxide and packaging plutonium metal and oxide in accordance with DOE-STD-3013 will be installed in existing building 235-F. Pre-conceptual design evaluations for the modifications to building 235-F have been completed with the conclusion that the plutonium stabilization and packaging capability can be provided in building 235-F. Because of the preliminary nature of the pre-conceptual efforts, it is not possible to provide a definitive project and operational schedule at this time. Conceptual design and 35% detail design for the building 235-F project must be completed before the final project and operational baseline dates are established. It is expected that the final project baselines will be established in FY 2002. We expect that as further design continues the current uncertainties will be resolved with a goal of accelerating project completion.

While the SRS has established the capability to package plutonium metal into the inner 3013 container (the FB-Line Bagless Transfer System), and all available plutonium metal has been so packaged, the greatest risk reduction for SRS plutonium storage will be achieved when plutonium oxides are packaged in accordance with the long-term storage criteria (DOE-STD-3013-99). Nonetheless, in
developing the Building 235-F stabilization and packaging project design, DOE will evaluate the option of establishing the outer-3013 container packaging capability in advance of completing the entire project. DOE will establish the outer 3013 capability early, and establish appropriate milestones for the project and completion of the 3013 packaging of plutonium metals, if it can be established without impacting the earliest final completion of the 235-F project. The SRS will continue to monitor the progress of both the Hanford and Rocky Flats stabilization and packaging projects. Lessons learned during completion, startup and operation of those projects will be factored into the design activities at the SRS and alternatives will be evaluated that might accelerate establishing the DOE-STD-3013-99 capabilities at the SRS.

Rocky Flats Classified Plutonium Metal:

DOE decided in the ROD for the Storage and Disposition of Weapons-Useable Fissile Materials Final Programmatic EIS (January 1997) to relocate all RFETS non-pit weapons-useable plutonium, to include approximately 200 containers of classified plutonium metal, to SRS pending selection of SRS as the immobilization site. DOE selected the SRS in the ROD for the Surplus Plutonium Disposition EIS (January 2000) as the site for immobilization disposition. The classified plutonium metal at RFETS is being shipped to SRS where it will be recast in FB-Line and packaged in accordance with DOE-STD-3013.

Residues:

For residues, the first IMNM EIS ROD, issued December 12, 1995, selected stabilization by dissolving material in F- or H-Area, purifying the plutonium in solution, and transferring the residual solution to FB- or HB-Line for conversion to a metal or oxide. The first IMNM EIS ROD also included the additional stabilization options of improving storage and vitrifying the materials in F-Canyon. The fourth Supplemental ROD issued October 31, 1997, added processing and storage for vitrification in the DWPF as another stabilization method.

The sand, slag and crucible and DU/Pu have been dissolved in F-Canyon, and the plutonium sweepings have been dissolved using both F-Canyon and HB-Line Phase I. The resultant solutions in F-Canyon will be converted to metal in FB-Line and packaged in BTS containers. The resultant solution in HB-Line will be converted to oxide using HB-Line Phase II. The miscellaneous plutonium metal has been recast in FB-Line and packaged in BTS containers.

Where material and packaging properties are characterized incompletely, a program has been instituted to select the required stabilization process. Methods used include NDA using digital radiography equipment installed in March 1997, and selected sampling of containers using existing gloveboxes with modification. Full material characterization capability began in April 1999.

Current plans call for the repackaging of all existing high-grade, mixed plutonium solids (>100 g/can) to meet the metal and oxide storage standard. Other possibly unstable residues which are slated for processing include the mixed, low-grade solids. The material processed in HB-Line will be transformed to oxide, while the residues processed in F-Area will be converted to metal. Ultimately, the plutonium oxides will be high fired and the plutonium metals and oxides will be packaged in accordance with DOE-STD-3013.
Rocky Flats Scrub Alloy:

In accordance with the first RFETS Residue EIS ROD (issued November 25, 1999), the existing scrub alloy at RFETS has been shipped to SRS where it will be dissolved in F-Canyon. The plutonium recovered will be processed through F-Canyon and transferred to FB-Line for conversion to metal and packaging for storage.

Hanford Materials:

The Department is investigating options for off-site stabilization (or disposition) of some of Hanford's 94-1 materials. A portion of these materials, plutonium-aluminum alloys, may be sent to the SRS for canyon processing. If the decision is made to send this material to the SRS it would be dissolved in F-Canyon, transferred to FB-Line for conversion to metal, and ultimately packaged in accordance with DOE-STD-3013.

Spent Nuclear Fuel:

Based upon the IMNM EIS ROD (February 8, 1996), dissolution of SRS Mark-16 and Mark-22 HEU SNF began in July 1997. The HEU SNF is being dissolved in the H-Canyon consistent with past practice. The resulting enriched uranium solutions are now transferred to the enriched uranium storage tank in the H-Area A-Line facility for temporary storage. Miscellaneous aluminum-clad targets and fuels will also be dissolved, and the resultant solutions containing HEU may be blended down and transferred to TVA, similar to the existing HEU solution and solutions resulting from dissolution of the Mk-16/22 spent fuel. The remainder will be transferred to the Waste Tank Farm.

Deliverables/Milestones

(Note: In order to accomplish the SRS stabilization activities on the new schedule described below for FY 2001 and beyond, the Department must work with the appropriate parties to realign its FY 2001 budget with the new SRS sitewide baseline. An additional 6-month to 12-month delay could be required if the FY 2001 realignment of funds is not accomplished, requiring the Department to request a reprogramming.)

Plutonium Solutions

Commitment Statement: Begin converting pre-existing H-Canyon Pu-239 solution to oxide
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
Applicable Facilities: H-Canyon and HB-Line
Commitment Deliverable: Begin operating HB-Line Phase II and conversion of the Pu-239 solution to oxide
Due Date: December 2001

Commitment Statement: Complete conversion of pre-existing H-Canyon Pu-239 solution to oxide
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
<table>
<thead>
<tr>
<th>Applicable Facilities</th>
<th>Commitment Deliverable</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-Canyon and HB-Line</td>
<td>34,000 liters of H-Canyon Pu-239 solutions converted to oxide.</td>
<td>December 2002</td>
</tr>
</tbody>
</table>

Metal and Oxide >30% Plutonium

<table>
<thead>
<tr>
<th>Commitment Statement</th>
<th>Responsibility</th>
<th>Applicable Facilities</th>
<th>Commitment Deliverable</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resume Bagless Transfer System operation</td>
<td>Charles A. Hansen, DOE-SR, Assistant Manager</td>
<td>FB-Line</td>
<td>Resume packaging plutonium metal into BTS containers (inner 3013 containers)</td>
<td>June 2000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commitment Statement</th>
<th>Responsibility</th>
<th>Applicable Facilities</th>
<th>Commitment Deliverable</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin conceptual design for 235-F Stabilization subproject</td>
<td>Charles A. Hansen, DOE-SR, Assistant Manager</td>
<td>N/A</td>
<td>Begin conceptual design for the subproject</td>
<td>July 2000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commitment Statement</th>
<th>Responsibility</th>
<th>Applicable Facilities</th>
<th>Commitment Deliverable</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete conceptual design for 235-F Stabilization subproject</td>
<td>Charles A. Hansen, DOE-SR, Assistant Manager</td>
<td>N/A</td>
<td>Complete conceptual design for the subproject</td>
<td>January 2001 - April 2001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commitment Statement</th>
<th>Responsibility</th>
<th>Applicable Facilities</th>
<th>Commitment Deliverable</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin detail design for 235-F Stabilization subproject</td>
<td>Charles A. Hansen, DOE-SR, Assistant Manager</td>
<td>N/A</td>
<td>Begin detail design for the subproject</td>
<td>March 2001 - October 2001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commitment Statement</th>
<th>Responsibility</th>
<th>Applicable Facilities</th>
<th>Commitment Deliverable</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin construction for 235-F Stabilization subproject</td>
<td>Charles A. Hansen, DOE-SR, Assistant Manager</td>
<td>235-F</td>
<td>Begin construction activities for the subproject</td>
<td>July 2002 - April 2003</td>
</tr>
</tbody>
</table>

Commitment Statement: Begin operation of equipment for high firing and packaging plutonium in accordance with DOE-STD-3013

94-1 Implementation Plan: Revision 3
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
Applicable Facilities: 235-F
Commitment Deliverable: Begin stabilizing and packaging plutonium for long-term storage
Due Date: January 2005 - January 2007

Commitment Statement: Complete stabilization and packaging of all plutonium at SRS to DOE-STD-3013
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
Applicable Facilities: 235-F
Commitment Deliverable: All pre-existing SRS plutonium metal and oxide, and plutonium metal and oxide resulting from stabilization of all material within the April 2000 scope of the SRS stabilization program, stabilized and packaged in accordance with DOE-STD-3013
Due Date: June 2006 - June 2008

Residues <30% Plutonium
Commitment Statement: Resume HB-Line dissolution of SRS residues
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
Applicable Facilities: HB-Line
Commitment Deliverable: Resume operation of HB-Line Phase I and dissolution of SRS plutonium residues
Due Date: September 2000

Commitment Statement: Begin converting SRS residue solution to oxide
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
Applicable Facilities: HB-Line
Commitment Deliverable: Begin operation of HB-Line Phase II to convert solution from dissolution of pre-existing SRS plutonium residues to oxide
Due Date: January 2003

Commitment Statement: Complete dissolution of SRS pre-existing plutonium residues
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
Applicable Facilities: HB-Line, FB-Line and H-Canyon
Commitment Deliverable: All SRS plutonium residues from May 1994 inventory dissolved
Due Date: September 2005

Special Isotopes
Commitment Statement: Complete Am/Cm Vitrification Project Design
<table>
<thead>
<tr>
<th>Commitment Statement</th>
<th>Responsibility:</th>
<th>Applicable Facilities:</th>
<th>Commitment Deliverable:</th>
<th>Due Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivery of in-cell vitrification equipment</td>
<td>Charles A. Hansen, DOE-SR, Assistant Manager</td>
<td>N/A</td>
<td>Receive in-cell Am/Cm vitrification equipment from vendor</td>
<td>May 2002</td>
</tr>
<tr>
<td>Complete construction for Am/Cm Vitrification Project</td>
<td>Charles A. Hansen, DOE-SR, Assistant Manager</td>
<td>F-Canyon/Multi-Purpose Processing Facility</td>
<td>Complete MPPF construction activities</td>
<td>October 2003</td>
</tr>
<tr>
<td>Begin stabilization of Am/Cm solution</td>
<td>Charles A. Hansen, DOE-SR, Assistant Manager</td>
<td>F-Canyon/Multi-Purpose Processing Facility</td>
<td>Begin pre-treatment of the May 1994 inventory of Am/Cm solution stored in F-Canyon</td>
<td>October 2004</td>
</tr>
<tr>
<td>Begin vitrifying Am/Cm solution</td>
<td>Charles A. Hansen, DOE-SR, Assistant Manager</td>
<td>F-Canyon/Multi-Purpose Processing Facility</td>
<td>Begin vitrifying May 1994 inventory of Am/Cm solution stored in F-Canyon</td>
<td>January 2005</td>
</tr>
<tr>
<td>Complete vitrifying Am/Cm solution</td>
<td>Charles A. Hansen, DOE-SR, Assistant Manager</td>
<td>F-Canyon/Multi-Purpose Processing Facility</td>
<td>Vitrify May 1994 inventory of Am/Cm solution stored in F-Canyon</td>
<td>December 2005</td>
</tr>
</tbody>
</table>

Commitment Statement: Begin stabilization of Np-237 solution
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
Applicable Facilities: H-Canyon and HB-Line
Commitment Deliverable: Begin converting May 1994 inventory of Np-237 solution to oxide
Due Date: April 2005

Commitment Statement: Complete stabilization of Np-237 solution
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
Applicable Facilities: HB-Line and H-Canyon
Commitment Deliverable: Np solution converted to stable oxide
Due Date: December 2006

Uranium

Commitment Statement: Complete DOE/TVA interagency agreement for Off-Specification Fuel Program
Responsibility: Laura S. H. Holgate, DOE-HQ, NN-60
Applicable Facilities: N/A
Commitment Deliverable: Agreement signed by both DOE and TVA for transfer of uranium from DOE to TVA
Due Date: August 2000

Commitment Statement: Begin preliminary design for HEU Blend Down Project
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
Applicable Facilities: N/A
Commitment Deliverable: Begin detail design for project
Due Date: October 2000

Commitment Statement: Complete transfer of HEU solution to double-walled tank
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
Applicable Facilities: H-Canyon and HA-Line
Commitment Deliverable: Chemically refresh HEU solution stored outside H-Canyon and transfer to double-walled tank
Due Date: September 2001

Commitment Statement: Begin disposition of pre-existing enriched uranium solution and enriched uranium solution resulting from Mk-16/22 SNF dissolution
Responsibility: Charles A. Hansen, DOE-SR, Assistant Manager
Applicable Facilities: H-Canyon, HA-Line
Commitment Deliverable: Begin isotopic blend down of HEU solution and transfer of low enriched uranium solution to TVA
Due Date: March 2003
<table>
<thead>
<tr>
<th>Commitment Statement</th>
<th>Responsibility</th>
<th>Applicable Facilities</th>
<th>Commitment Deliverable</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete disposition of pre-existing enriched uranium solution and enriched uranium</td>
<td>Charles A. Hansen, DOE-SR, Assistant Manager</td>
<td>H-Canyon, HA-Line</td>
<td>All enriched uranium solutions transferred to TVA</td>
<td>September 2005</td>
</tr>
<tr>
<td>solution resulting from Mark-16/22 SNF dissolution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spent Nuclear Fuel

<table>
<thead>
<tr>
<th>Commitment Statement</th>
<th>Responsibility</th>
<th>Applicable Facilities</th>
<th>Commitment Deliverable</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commitment Statement</th>
<th>Responsibility</th>
<th>Applicable Facilities</th>
<th>Commitment Deliverable</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Mark-16/22 SNF dissolution</td>
<td>Charles A. Hansen, DOE-SR, Assistant Manager</td>
<td>H-Canyon</td>
<td>Mark-16/22 SNF dissolved</td>
<td>March 2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RFETS Metal and Scrub Alloy

<table>
<thead>
<tr>
<th>Commitment Statement</th>
<th>Responsibility</th>
<th>Applicable Facilities</th>
<th>Commitment Deliverable</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin dissolution of RFETS scrub alloy</td>
<td>Charles A. Hansen, DOE-SR, Assistant Manager</td>
<td>F-Canyon</td>
<td>Begin dissolving RFETS scrub alloy</td>
<td>April 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commitment Statement</th>
<th>Responsibility</th>
<th>Applicable Facilities</th>
<th>Commitment Deliverable</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete dissolution of RFETS scrub alloy</td>
<td>Charles A. Hansen, DOE-SR, Assistant Manager</td>
<td>F-Canyon</td>
<td>Complete dissolving RFETS scrub alloy</td>
<td>September 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commitment Statement</th>
<th>Responsibility</th>
<th>Applicable Facilities</th>
<th>Commitment Deliverable</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete direct casting RFETS classified plutonium metal</td>
<td>Charles A. Hansen, DOE-SR, Assistant Manager</td>
<td>FB-Line</td>
<td>Complete recasting RFETS classified metal</td>
<td></td>
</tr>
</tbody>
</table>
Due Date: March 2006
5.2.3 Rocky Flats

Plutonium Solutions:

Solutions remain in Building 559 and Building 771. Building 559 continues to generate small quantities of low-level waste solutions due to analytical analysis to support Site closure. Building 771 continues to generate liquids from the tap and drain operations. Low-level solutions in Building 771, including holdup drained from piping systems and low-points, are being batched and transferred to Building 774 for cementation. Solutions from Building 771 and Building 559 activities that are compatible with the Caustic Waste Treatment System process will be stabilized in Building 371. The precipitate is being calcined and placed in temporary storage awaiting safe interim storage. The effluent is being transferred to Building 374 for further liquid waste processing. The impact of delays in Building 771 tap and draining will result in processing liquids in Building 371 through March 2002.

Experience gained during preparation and draining the first system in Building 771 indicated that flammable concentrations of hydrogen gas should be expected in all of the process system piping / components and appropriate safety controls should be implemented. This required expanding the hydrogen safety controls which were already applied to tanks to process piping systems. Activities in the process and laboratory areas are controlled to prevent ignition sources. Tools, vacuum pumps, drain-taps and other equipment used on systems that are to be drained are 'non-spark' by design. Also, draining preparations include venting and purging operations that assure hydrogen in the piping is below the lower explosive limit.

Building 771 continues to drain and remove piping systems. The two methods used to remove piping systems in Building 771 are a system-by-system (removal immediately after system has been drained) approach, and a recently added room-by-room approach. This new room-by-room approach (1) significantly increases worker industrial safety, (2) implements process efficiency lessons-learned from Building 779, and (3) reduces risk by accelerating draining of piping systems ahead of milestone schedules. The method that provides the greatest efficiency for risk reduction will be implemented. To minimize risk, each piping system is sampled to determine the system hydrogen generation rate. If the hydrogen concentration exceeds 25% of the lower explosive limit prior to pipe removal, the piping system will be removed immediately after draining (i.e., by implementing the system-by-system approach). The known leaking low points and joints are identified, contained, and controlled.

If hydrogen monitoring indicates that the piping system does not need to be removed immediately, the room-by-room approach is implemented. This method provides for partial removal of the process system to logical hold points or removal of the entire system. The piping may remain in place for up to 18 months after draining is completed, however, pipe removal is scheduled to be completed by December 2001. Prior to piping removal, the system is vacuum purged to ensure that any potential hydrogen is removed. The room-by-room approach minimizes the hazards associated with interference from other piping systems and improves industrial worker safety. Many piping systems are located several layers deep in the overheads that are located above gloveboxes and tanks. These piping systems are difficult to access; require intricate scaffolding to reach; and expose the workers to work in potentially unsafe conditions. The room-by-room approach allows piping to be removed from the bottom up, where piping is easily accessible without intricate scaffolding thereby substantially reducing fall, strain, and chemical exposure risk to the worker.
Both methods use characterization data gathered at the time of process system draining. If the room-by-room method is used, characterization data is saved and the piping left is tagged tying it back to the draining characterization data. This revised strategy supports site acceleration of process system draining and completion of work by December 2001.

The liquid stabilization program will be integrated with current efforts to meet the appropriate safe storage criteria (i.e., DOE-STD-3013-99 or Interim Safe Storage Criteria) for the plutonium solids generated as a result of the stabilization process. The solids generated will be initially packaged to meet site storage requirements until packaged to meet longer-term storage criteria. See Figure 5.2.3-1 for a simplified flow diagram.

Figure 5.2.3-1: Plutonium Solution Stabilization Process Flow Diagram

Metals and Oxides: In order to meet DOE-STD-3013-99, the long term storage standard, a packaging system with manual furnaces is being installed in Building 371. The system will feature the capability to brush loose oxide from metal, stabilize the oxide to meet the 0.5 weight percent moisture requirement, and package both metal and oxide in a welded stainless steel container, which is sealed within a second welded stainless steel container. This system will be available to start packaging metal or oxide into 3013 containers by October 2000.

The Department plans to accelerate the shipment of plutonium metal and oxides at Rocky Flats to the Savannah River Site (SRS) in order to support the goal of accelerating closure at Rocky Flats from 2010 to 2006. The K-Area at SRS has been modified to allow storage of Rocky Flats' plutonium pending disposition. Shipments to SRS are planned to begin in November 2000 and complete in December 2002. Classified plutonium will not be packaged in a 3013 container before shipment to SRS. This material will be declassified by recasting in FB-Line at the SRS then ultimately put into a 3013 container.
Scrub alloy, an alloyed button of plutonium and americium from the scrubbing of salts from the molten salt extraction process, will be shipped to SRS for processing in F-Canyon. Processing of the scrub alloy at SRS allows the americium (a high worker exposure source) to be extracted to the high-level waste processing system and the by-product plutonium metal to be packaged to the long-term storage standard. Shipments of RFETS scrub alloy were completed in March 2000. See Section 5.2.2 for when this material will be stabilized.

Residues:

Plans for remaining residues requiring stabilization are as follows:

Salts: Remaining low risk salt residues will be blended to below the 10 weight percent plutonium concentration limit and repackaged into containers and placed in a pipe component to meet ISSC and WIPP standards. Salt repackaging will be complete by December 2000.

Wet Combustibles: Approximately 11,000 kg of wet combustible residues were originally classified as high risk. With the recharacterization of wet combustible residues from high hazard to low hazard, the need to perform any stabilization has been eliminated. Most of these low hazard wet combustible residues need only undergo a combination of sorting, blending, drying, repackaging, headspace gas sampling, and gas generation testing. A portion of these low hazard residues need only undergo real-time radiography, headspace gas sampling and gas generation testing. Operations that implement this simplified repackaging strategy commenced on October 6, 1998. All of these residues will meet the WIPP standards. The majority of these residues will not meet the ISSC (i.e., double metal containment boundaries), but will be made ISSC compliant or shipped to WIPP by May 2002. A high priority will be placed on shipping combustibles to WIPP, especially those that are non-ISSC compliant. In the interim, surveillance monitoring will be performed to ensure safe interim storage.

Ash: Remaining low risk ash (including graphite fines) will be blended as necessary to be below the 10 percent plutonium concentration limit, then repackaged into containers and placed in a pipe component to meet ISSC and WIPP standards. Ash repackaging will be complete by December 2000.

Sand, Slag, and Crucible Residues: SS&C residues are currently being stored in a non-vented configuration. Surveillance will be performed until repackaging to WIPP standards commence. As required, any corrective actions to assure safe storage will be taken. SS&C residues will be blended, as required, to below the 10 weight percent plutonium concentration limit and placed in a pipe component to meet ISSC and WIPP standards. Repackaging operations will be complete by May 2002.

Dry/Repack Residues: Dry/repack residues do not require stabilization but must be repackaged to meet the ISSC and WIPP standard. Repackaging operations will be complete by May 2002.

Residues Summary: In light of characterization developments, robustness of the POC, termination of safeguards on residues, and further integrating site closure goals, the above modifications to the original Defense Nuclear Facilities Safety Board Recommendation 94-1...
Implementation Plan have been made to reduce overall site risk and support Site closure while meeting original commitments of making all low risk residues ISSC compliant by May 2002. Pending shipment to WIPP, a post-stabilization monitoring program for all residues will be implemented to assure safe interim storage.

Deliverables/Milestones

Solutions

<table>
<thead>
<tr>
<th>Commitment Statement</th>
<th>Responsibility</th>
<th>Applicable Facilities</th>
<th>Commitment Deliverable</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain eight additional actinide systems in B771.</td>
<td>Henry F. Dalton, DOE-RFFO, Assistant Manager</td>
<td>Building 771</td>
<td>Eight additional actinide systems drained in B771.</td>
<td>September 2000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commitment Statement</th>
<th>Responsibility</th>
<th>Applicable Facilities</th>
<th>Commitment Deliverable</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete removal of all liquids in B771 (including all non-actinide systems).</td>
<td>Henry F. Dalton, DOE-RFFO, Assistant Manager</td>
<td>Building 771</td>
<td>Remove all liquids from B771.</td>
<td>December 2001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commitment Statement</th>
<th>Responsibility</th>
<th>Applicable Facilities</th>
<th>Commitment Deliverable</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete processing all of the B771 liquids.</td>
<td>Henry F. Dalton, DOE-RFFO, Assistant Manager</td>
<td>Building 371</td>
<td>All B771 liquids processed.</td>
<td>March 2002</td>
</tr>
</tbody>
</table>

Metal and Oxide

<table>
<thead>
<tr>
<th>Commitment Statement</th>
<th>Responsibility</th>
<th>Applicable Facilities</th>
<th>Commitment Deliverable</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start packaging metal or oxide into 3013 containers.</td>
<td>Henry F. Dalton, DOE-RFFO, Assistant Manager</td>
<td>Building 371</td>
<td>Start packaging metal or oxide into 3013 containers.</td>
<td>October 2000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commitment Statement</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repackage all metal and oxides (except classified metal) into 3013 containers.</td>
<td>Henry F. Dalton, DOE-RFFO, Assistant Manager</td>
</tr>
</tbody>
</table>
Applicable Facilities: Building 371
Commitment Deliverable: Repackage all metal and oxides (except classified metal) into 3013 containers.
Due Date: May 2002

Residues

Commitment Statement: Complete repackaging of all salts.
Responsibility: Henry F. Dalton, DOE-RFFO, Assistant Manager
Applicable Facilities: Building 371
Commitment Deliverable: Complete repackaging of all salts.
Due Date: December 2000

Commitment Statement: Complete repackaging of all ash.
Responsibility: Henry F. Dalton, DOE-RFFO, Assistant Manager
Applicable Facilities: Buildings 707 and 371
Commitment Deliverable: Complete repackaging of all ash.
Due Date: December 2000

Commitment Statement: Complete repackaging all remaining low risk residues to meet ISSC.
Responsibility: Henry F. Dalton, DOE-RFFO, Assistant Manager
Applicable Facilities: Buildings 707 and 371
Commitment Deliverable: Complete repackaging all remaining low risk residues to meet ISSC.
Due Date: May 2002.
5.4.4 Oak Ridge

The remaining materials at Oak Ridge in the 94-1/2000-1 scope are plutonium stored at ORNL in Building 3027 and uranium salt in the Molten Salt Reactor Experiment. Plans to complete stabilization of these materials are described in the following paragraphs.

Plutonium: The quantities of plutonium metals and oxides (>50% assay) and plutonium residues and mixed oxides (<50% assay) shown in Tables 3.2-1, 3.2-2, and 3.3-1 of the original Recommendation 94-1 Implementation Plan (March 1995) erroneously include both materials that continue to have a programmatic use and materials that are excess to programmatic needs. Only the excess materials, approximately 609 grams of Pu-238/Np-237 designated for transfer to the Department’s Pu-238 Heat Source Program and approximately 708 grams of “other” plutonium identified as unneeded and packaged awaiting shipment to LLNL, are specifically 94-1 materials.

It is Oak Ridge’s intention that it will meet its one 94-1/2000-1 plutonium commitment to, “Repackage all plutonium metals and oxides to meet the metal and oxides storage standard,” by May 2002, by transferring the Pu-238/Np-237 to the Department’s Pu-238 Heat Source Program when facilities are available to secure the material, and by shipping its other 94-1 material to LLNL where it will be integrated into and processed with that site’s 94-1 Plutonium inventory. An agreement for shipping the material in FY 2000 is currently being negotiated with LLNL.

Molten Salt Reactor Experiment (MSRE): In February 1999, the DNFSB was advised of the technical inability to meet a February 1999 commitment for removal of the uranium deposit in the Molten Salt Reactor Experiment Auxiliary Charcoal Bed (ACB). It had been determined that the charcoal was not granular, as initially expected, and therefore, not amenable to the proposed vacuuming method of removal. Studies were conducted. Under the existing Federal Facility Agreement with the Tennessee Department of Environment and Conservation (TDEC) and the U.S. Environmental Protection Agency (EPA), an alternative which involves cutting off the top of the ACB and allows for aggressive techniques to break up the charcoal for subsequent vacuuming, was chosen as the selected remedy in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act. In accordance with these studies and agreements, the commitment for removal of the uranium deposit will be delayed until December 2000.

Since the removal of fuel and flush salts is a Comprehensive Environmental Response, Compensation and Liabilities Act (CERCLA) Interim Remedial Action, a Feasibility Study, proposed plan, and Record of Decision for the disposition of the fuel salt and the reactor flush salt were submitted to the regulators and the public for review and comment, and approved by the State of Tennessee Department of Environment and Conservation, and the Environmental Protection Agency. The site’s MSRE 94-1 commitment will be completed when the fuel and flush salt are removed in accordance with the approved CERCLA Record of Decision.
Deliverables/Milestones

Metal and Oxide >30% Plutonium

Commitment Statement:
Repackage all plutonium metals and oxides to meet the metal and oxide storage standard.

Responsibility:
H. Clark

Applicable Facilities:
ORNL, Building 3027

Commitment Deliverable:
Dispose of unneeded plutonium at ORNL.

Due Date:
May 2002

Uranium

Commitment Statement:
Remove uranium deposit from Auxiliary Charcoal Bed.

Responsibility:
M. Jugan

Applicable Facilities:
ORNL, Building 7503

Commitment Deliverable:
Remove uranium deposit from Auxiliary Charcoal Bed Cell.

Due Date:
December 2000

Commitment Statement:
Complete fuel and flush salt removal from MSRE.

Responsibility:
M. Jugan

Applicable Facilities:
ORNL, Building 7503

Commitment Deliverable:
Remove fuel salt and flush salt from fuel drain tanks and flush tank.

Due Date:
May 2002
5.2.5 Los Alamos National Laboratory

Materials in the original 94-1 inventory at Los Alamos National Laboratory (LANL) included several high-risk residue material categories (sand, slag and crucible, hydroxide precipitates, silica filter residues, and cellulose clean-up rags). Los Alamos has completed stabilization of all high-risk vault items. The remaining high-risk inventory described in Table 5.4.5.1 is the Laboratory-wide inventory and includes uranium residues, Pu-238 residues, and Pu-242 residues. The capability to stabilize both high-risk HEU items and Pu-238 items is still under development; and as a result alternate disposition paths are being evaluated for these items. The high-risk Pu-242 items are actively being processed and are expected to be stabilized by the end of FY2000.

Current status of the remaining high-risk inventory is listed below:

Hydroxide Precipitates: The remainder 8 items in this category contain Pu-242 and Pu-238 and will not be processed in equipment dedicated for Pu-239 processing. LANL is processing Pu-242 items and is expected to complete the stabilization by end of FY2000. All Pu-242 items and Pu-238 items are located in glovebox enclosures and not in the vault.

Silica Solids: The non-Pu242 items were stabilized by chemical processing in April 1998. The plans for remaining Pu-242 items, located in glovebox enclosures, are to recover Pu from the residues when the aqueous nitrate operations become available.

Cellulose Cleanup Rags: The remaining two items will be either stabilized and actinide recovered or dispositioned through enhanced discard options.

The approach for completing plans to stabilize the remaining Los Alamos materials which are in the scope of Recommendation 2000-1 is described in the following paragraphs. Los Alamos is in the process of defining the inventory of accountable plutonium items that contain plutonium excess to national security needs. The baseline excess inventory will be finalized by June 15, 2000.

The priority and the schedule for stabilization and/or processing of items will be established through an integrated safety assessment approach addressing risk of items or batches of items. The approach will consider both legacy and newly generated items and will be based on a worker safety model derived and refined from the original modeling applied to the 94-1 inventory at the inception of the program. This risk-based prioritization scheme for remediating legacy materials will include personnel exposure as a risk factor. Worker exposure has a significant impact on vault management operations. Thus, the risk-prioritization scheme not only supports a broader risk-management perspective, but also directly includes factors that historically have been used to prioritize from an operational perspective.

When completed, this methodology will have established a technical basis for establishing material risks and priority of stabilization. The risk baseline and the processes for managing these risks will be established by July 31, 2000.

The categorization of original 94-1 inventory into excess and non-programmatic inventory is shown in Figure 1. In addition, Figure 1 illustrates disposition pathways for each category of material. The non-excess programmatic inventory which includes 242plutonium, intrinsically sealed standards, isotope sales
material will be either stabilized to meet DOE-STD-3013-99 and packaged into an inner ARIES container (equivalent to inner 3013 can) or packaged to meet the criteria for WIPP-WAC.

![Diagram](image)

Figure 1. Evolution of the original Los Alamos 94-1 inventory into the excess inventory and non-excess programmatic inventory

Plutonium Metals and Oxides: With the establishment of excess inventory, Los Alamos can begin to evaluate, prepare, and package oxide and metal or alloys into inner ARIES containers (equivalent to inner 3013 can). These containers would be decontaminated and over-packaged in TA-55 standard containers until the availability of outer 3013 container. The strategy for oxide materials is to prepare large homogeneous master blends (~50 kg), submit a sample representative of the blend to the Materials Identification and Surveillance (MIS) program for characterization, and then package the material, on a non-interference basis, into inner ARIES containers. A similar approach is being considered for metal, however, no master blends would be conducted. MIS has not evaluated metal to a large extent but we expect their results on impure metal or alloys to allow broad overlap of impurity concentrations for packaging.

The non-excess metal designated for programmatic use will be temporarily stored in reusable flanged containers (ConFlat containers). Currently, LANL has about 100 packages of non-excess metal in DOE-STD 3013-94 package and has no plans to repackage these items to meet the DOE-STD 3013-99.

Residues: As shown in Figure 1, the disposition path for excess plutonium-containing residues at Los Alamos includes direct disposition to WIPP as well as preparing residues for shipment to SRS. Aqueous processing is anticipated only for those items containing significant plutonium concentrations in order to separate the plutonium as an impure oxide for immobilization in glass. Los Alamos is pursuing a variance
to discard material above the attractiveness level E criteria for termination of safeguards at WIPP.

The status of unsheltered containers continues to receive considerable attention at LANL. Currently, plans are being evaluated to disposition their contents by means other than processing. The plan for disposition of unsheltered containers will be established by July 2000.

Table 5.4.5.1 shows the material inventory remaining as of Fiscal Year 1999. In addition, it shows the total items that have been stabilized as of this date.

Table 5.4.5-1: Stabilized Legacy Items and Current Inventory Remaining

<table>
<thead>
<tr>
<th>Legacy Pu Inventory (Items only)</th>
<th>Total items remediated</th>
<th>94-1 inventory remaining *</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pu Metal</td>
<td>1492</td>
<td>568</td>
<td>2060</td>
</tr>
<tr>
<td>Impure Oxides/Misc Compounds</td>
<td>923</td>
<td>1289</td>
<td>2212</td>
</tr>
<tr>
<td>High risk SS&C</td>
<td>307</td>
<td>0</td>
<td>307</td>
</tr>
<tr>
<td>High risk Hydroxide Precipitate</td>
<td>305</td>
<td>8</td>
<td>313</td>
</tr>
<tr>
<td>High risk Silica Solids</td>
<td>45</td>
<td>7</td>
<td>52</td>
</tr>
<tr>
<td>High risk Cellulose Rags</td>
<td>111</td>
<td>2</td>
<td>113</td>
</tr>
<tr>
<td>High priority Process Residues</td>
<td>153</td>
<td>429</td>
<td>582</td>
</tr>
<tr>
<td>Analytical Chem Sample Returns</td>
<td>194</td>
<td>0</td>
<td>194</td>
</tr>
<tr>
<td>Analytical Chem Solution Returns</td>
<td>474</td>
<td>6</td>
<td>480</td>
</tr>
<tr>
<td>High Priority Compounds</td>
<td>72</td>
<td>54</td>
<td>126</td>
</tr>
<tr>
<td>Misc Combustibles</td>
<td>72</td>
<td>0</td>
<td>72</td>
</tr>
<tr>
<td>Misc Process Residues</td>
<td>348</td>
<td>874</td>
<td>1222</td>
</tr>
<tr>
<td>Noncombustible</td>
<td>393</td>
<td>471</td>
<td>864</td>
</tr>
<tr>
<td>Unsheltered Containers</td>
<td>4</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>Gases</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TOTALS</td>
<td>4894</td>
<td>3717</td>
<td>8611</td>
</tr>
</tbody>
</table>

* includes programmatic materials that will be treated differently than excess.

Deliverables/Milestones

Los Alamos will develop a prioritization methodology using an integrated safety assessment approach for the stabilization of legacy and newly generated materials by July 31, 2000. This methodology will consider operational requirements, constraints and opportunities to improve operational efficiency and will enable a prioritized work-off of the excess material inventory by either aqueous processing or direct discard. In addition, the Lab will establish baseline excess inventory by June 15, 2000. Upon completion of the June and July milestones shown below, an integrated plan will be prepared showing milestones for stabilization or discard of remaining 94-1 materials. This plan will consider the effects of processing newly generated
The plan will be discussed with DNFSB staff and members on a schedule supporting submission of an Implementation Plan revision by October 31, 2000.

<table>
<thead>
<tr>
<th>Commitment Statement</th>
<th>Responsibility</th>
<th>Applicable Facilities</th>
<th>Commitment Deliverable</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establish and identify 94-1 materials into programmatic and excess categories</td>
<td>Sujita Pierpoint, DP-223</td>
<td>TA-55, CMR</td>
<td>A list of 94-1 excess and programmatic items.</td>
<td>June 15, 2000</td>
</tr>
<tr>
<td>Develop a risk baseline for legacy and newly generated materials, establish processes for maintaining baseline information and develop an approach for managing these risks.</td>
<td>Sujita Pierpoint, DP-223</td>
<td>TA-55</td>
<td>Quantifiable risk associated with each item and prioritization of items for stabilization and/or processing</td>
<td>July 31, 2000</td>
</tr>
<tr>
<td>Apply Plutonium Disposition Methodology for disposition of residues.</td>
<td>Sujita Pierpoint, DP-223</td>
<td>TA-55</td>
<td>Begin applying PDM to residues based on risk prioritization</td>
<td>July 31, 2000</td>
</tr>
<tr>
<td>Submit revision to LANL portion of the 2000-1 IP.</td>
<td>Sujita Pierpoint, DP-223</td>
<td>TA-55</td>
<td>An integrated plan with milestones for stabilization and discard of remaining 94-1 inventory within the context of</td>
<td></td>
</tr>
</tbody>
</table>
Due Date: October 31, 2000
5.4.6 Lawrence Livermore National Laboratory

The 2000-1 inventory at LLNL includes 114 cans of ash residues, 91 containers of metal that are either double canned or that use aluminum foil as the inner barrier, and 92 containers of other plutonium oxides greater than 50 wt% plutonium. This inventory is located in Building 332, which is a functional plutonium processing and handling facility that meets federal, state, and local environmental regulations as outlined in the LLNL Environmental Impact Statement.

Resolution Approach

LLNL has procured the BNFL packaging system with which it will package its excess 94-1 plutonium inventory to meet the requirements of the plutonium packaging and storage standard (DOE-STD-3013-99). LLNL will use an existing glove box and furnaces to meet stabilization requirements; however, the glove box is not currently authorized for plutonium operations. Therefore, the Plutonium Facility work control process will be implemented to obtain authorization for plutonium operations. The PuSAP Installation was scheduled to be completed and be operational in the spring of 2000. Due to funding prioritization, the non-availability of BNFL engineers, design issues, and uncertainties in the welding certification requirements, the start-up may be delayed through September 2000. Processing and repackaging of the 94-1 inventory will begin directly thereafter. In the interim an ongoing packaging characterization and non-destructive assay program will be completed in August 2000.

Metal and Oxide Materials: LLNL has approximately 91 containers of metal and 92 containers of oxide that are excess inventory not required to support active Defense Programs missions. This material will be thermally stabilized and packaged in accordance with DOE-STD-3013-99 by May 2002. It will be retained in storage on site until further disposition is directed.

Additionally, LLNL is negotiating an agreement with Oak Ridge for that site’s small inventory of plutonium metal and oxide, approximately 708 grams, to be shipped to LLNL. The plan is for the material to be integrated into LLNL’s excess metal and oxide inventory and then stabilized and packaged as part of the site’s 94-1 commitment.

Ash residues: In 1994, eight of the cans containing ash residues were found to be pressurized. All 114 cans were vented to mitigate the pressurization problem and a study to determine a plan for the stabilization and packaging of the contents for long-term storage was completed. The ash will be washed with water or a weak acid solution and then thermally stabilized by calcination prior to packaging. This process is limited to small batch sizes making it necessary to extend the milestone date to May 2002. Resultant material that meets with DOE-STD-3013-99 will be packaged accordingly. The resultant material that meets the disposal criteria will be shipped to WIPP. The remainder will be retained on site until a decision for further disposition is made.

Residue materials: A study of the residues other than ash must be completed to determine the appropriate stabilization method. The decision about which stabilization method to use will be made following the completion of the study in FY2000. The stabilization and packaging of these will be completed by May 2002 which is 15 months later than the earlier projected completion date of February 2001. This schedule change is a result of the need to process some of these residues in small batch sizes as with the ash residues discussed above and the need to have flexibility to efficiently manage the stabilization and
packaging of all materials. The other than ash residues that meet the acceptance criteria will be shipped to WIPP. The remainder will remain on site awaiting a decision for further disposition.

Deliverables/Milestones

Metal and Oxide >30% Plutonium

<table>
<thead>
<tr>
<th>Commitment Statement:</th>
<th>Complete plutonium metal and oxide repackaging.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsibility:</td>
<td>Karen Dodson, LLNL</td>
</tr>
<tr>
<td>Applicable Facilities:</td>
<td>LLNL Building 332</td>
</tr>
<tr>
<td>Commitment Deliverable:</td>
<td>Complete plutonium metal and oxide repackaging.</td>
</tr>
<tr>
<td>Due Date:</td>
<td>May 2002</td>
</tr>
</tbody>
</table>

Residue <30% Plutonium

<table>
<thead>
<tr>
<th>Commitment Statement:</th>
<th>Stabilize and package LLNL's ash residues.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsibility:</td>
<td>Karen Dodson, LLNL</td>
</tr>
<tr>
<td>Applicable Facilities:</td>
<td>LLNL Building 332</td>
</tr>
<tr>
<td>Commitment Deliverable:</td>
<td>Complete ash stabilization and packaging.</td>
</tr>
<tr>
<td>Due Date:</td>
<td>May 2002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commitment Statement:</th>
<th>Stabilize and package all other LLNL residues.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsibility:</td>
<td>Karen Dodson, LLNL</td>
</tr>
<tr>
<td>Applicable Facilities:</td>
<td>LLNL Building 332</td>
</tr>
<tr>
<td>Commitment Deliverable:</td>
<td>Complete all residue stabilization and repackaging.</td>
</tr>
<tr>
<td>Due Date:</td>
<td>May 2002</td>
</tr>
</tbody>
</table>
6.0 ORGANIZATION AND MANAGEMENT

Completing the commitments identified in this Implementation Plan (IP) is one of the highest priorities of the Department. The Assistant Secretary for Environmental Management (EM-1) is the lead Program Secretarial Official (PSO) for the Department since most of the nuclear materials stabilization activities are under her purview. The Responsible Manager (RM) is the Deputy Assistant Secretary for Integration and Disposition, who has responsibility to perform all associated planning, response, and implementation activities, consistent with guidance provided in the Manual for Department of Energy Interface with the Defense Nuclear Facilities Safety Board (DOE M 140.1-1A), Section 1.3.f, "Responsibilities of the Responsible Manager." He is also responsible for working directly with program offices and providing recommendations for integration of implementation activities across programs and sites. In fulfilling these duties, he has the authority to escalate plan revision and implementation matters to the appropriate level of management for resolution. The Office of Nuclear Materials and Spent Fuel (EM-21) is the Recommendation 94-1/2000-1 Implementation Plan Manager (IPM). The Responsible Manager and the Implementation Plan Manager will work with appropriate managers from the Offices of Defense Programs (DP) and Environmental Management (EM) to ensure that stabilization activities at DP and EM sites are completed in a safe and timely manner.

Program direction shall pass from appropriate Program Offices in EM and DP to Field Offices under their cognizance. Consistent with the Department's Integrated Safety Management policy, the Program and Field Offices have the authority to direct, and are accountable to perform, the nuclear materials stabilization activities safely and in accordance with the Secretarial commitments contained in this IP. They are also responsible to provide timely information so that the Responsible Manager and Implementation Plan Manager can have a realistic assessment of progress toward meeting these commitments.

The Implementation Plan Manager is the day-to-day manager for the 94-1/2000-1 IP, and shall report directly to the Responsible Manager on 94-1/2000-1 issues. The Responsible Manager is supported by a 94-1/2000-1 Management Team, consisting of representatives from each of the Program Offices at Headquarters that have 94-1/2000-1 related stabilization activities at Field locations under their cognizance. The Offices of Fissile Materials Disposition (NN-60); Environment, Safety and Health (EH); Departmental Representative to the Board; and EM's Office of Science and Technology will also be represented on the 94-1/2000-1 Management Team. Their participation will ensure proper management of the interfaces between the materials stabilization and disposition programs, adequate resolution of environmental, safety and health vulnerabilities, and timely consideration of technology needs. It is important to note that, although the DP and NN-60 organizations have recently been reorganized as part of the new National Nuclear Security Administration, their representation and responsibilities with respect to DNFSB responses has not changed.

Field Office Managers are responsible for developing and executing fully resource-loaded 94-1/2000-1 management plans for their sites. These plans shall include appropriate narrative and schedules sufficient to indicate how their respective sites will meet their 94-1/2000-1 commitments. Recommendation 94-1/2000-1 Site Management Plans (94-1/2000-1 SMPs) may be developed as independent documents, or they may be identifiable components of each site's current EM Project Baseline Summaries (PBS) as long as the site's program for meeting their Recommendation 94-1/2000-1 Implementation Plan commitments are readily recognizable and extractable for review.
Reporting

The commitments in this IP will be supported by resource-loaded schedules. Overall progress toward meeting Recommendation 94-1/2000-1 Implementation Plan commitments will be reported monthly by each site via direct data inputs into either the EM Integrated Planning, Accountability and Budgeting System (IPABS), or the Department's Safety Issues Management System (SIMS) which is administered by the Office of the Departmental Representative to the Defense Nuclear Facilities Safety Board (S-3.1). For those sites reporting via IPABS, the 94-1/2000-1 Implementation Plan Manager will update the SIMS database to be consistent with the most recent information reported by the sites. The 94-1/2000-1 Management Team will analyze the 94-1/2000-1 SIMS information each month and review the status of implementation with the Responsible Manager. The commitment status will be reviewed with the lead Program Secretarial Official (EM-1), Responsible Manager (EM-20), EM Deputy Assistant Secretaries, and Field Managers on a quarterly basis through a process being institutionalized as a part of the EM Integrated Planning, Accountability and Budgeting System (IPABS). The 94-1/2000-1 Management Team will work with the appropriate Field Office managers to prepare an annual 94-1/2000-1 Implementation Plan Status Report using information from SIMS and IPABS. This status report will be an integral part of the Secretary’s Annual Report to Congress.

Change Control

Complex, long-range plans require sufficient flexibility to accommodate changes in commitments, actions, or completion dates that may be necessary due to additional information, improvements, or changes in baseline assumptions. The Department’s policy is to (1) have the Secretary approve all revisions to the scope and schedule of plan commitments; (2) provide prior, written notification to the Board on the status of any implementation plan commitment that will not be completed by the planned milestone date; and (3) clearly identify and describe the revisions and bases for the revisions. Fundamental changes to the plan’s strategy, scope, or schedule will be provided to the Board through formal reissuance of the implementation plan. Other changes to the scope or schedule of planned commitments will be formally submitted in appropriate correspondence approved by the Secretary, along with the basis for the changes and appropriate corrective actions.
This page intentionally left blank.
Appendix A
Glossary

Actinide—Any of a series of chemically similar, mostly synthetic, radioactive elements with atomic numbers ranging from actinium (89) through lawrencium (103).

Alpha emitter—A radioactive substance that decays by releasing an alpha particle.

Alpha particle—A particle consisting of two protons and two neutrons, given off by the decay of many elements, including uranium, plutonium, and radon. Alpha particles cannot penetrate a sheet of paper. However, alpha emitting isotopes in the body can be very damaging.

Americium—A manmade element. Americium is a metal that is slightly heavier than lead. Americium-241 is produced by the radioactive decay of plutonium-241; in addition to being an alpha-emitter, it is an emitter of gamma rays. Americium-241 has a half-life of 433 years.

As low as reasonably achievable (ALARA)—The approach to radiation protection to manage and control exposures (both individual and collective) to the work force and to the general public to as low as is reasonable, taking into account social, technical, economic, practical, and public policy considerations. ALARA is not a dose limit, but a process that has the objective of attaining doses as far below the applicable limits as is reasonably achievable.

Ash residues—This category of residues includes incinerator ash; inorganics; sand, slag, and crucible; graphite fines; and firebrick. These residues are grouped together because of the similar methods in which the residues will be treated and/or repackaged.

Atomic Energy Act (AEA)—A law originally enacted in 1946 and amended in 1954 that placed nuclear production and control of nuclear materials within a civilian agency, originally the Atomic Energy Commission. The Atomic Energy Commission was replaced by the U.S. Nuclear Regulatory Commission and the U.S. Department of Energy.

Beta emitter—A radioactive substance that decays by releasing a beta particle.

Beta particle—A particle emitted in the radioactive decay of many radionuclides. A beta particle is identical to an electron. It has a short range in air and a small ability to penetrate other materials.

Blend down—A process in which an appropriate material is added to a plutonium-bearing material to reduce the concentration of plutonium in the material. The quantity of plutonium in the material remains the same while the total quantity of material increases.

Bounded—Producing the greatest consequences of any assessment of impacts associated with normal or abnormal operations.

Button—Plutonium metal in a hemispherical shape, weighing approximately 2 kilograms.

Calcination—A process in which a material is heated to a high temperature to drive off volatile matter (i.e., remove organic material) or to effect changes (e.g., oxidation or carbonization) or to convert it to...
nodular form). Calciners and nodulizing kilns are considered to be similar units. The temperature is kept below the fusion point.

Canister—A stainless-steel container in which nuclear material is sealed.

Canyon—A heavily shielded building at the Savannah River Site used in the chemical processing of radioactive materials to recover special isotopes. Operation and maintenance are performed by remote control.

Cask—A heavily shielded massive container for holding nuclear materials during shipment.

Cementation—A process in which cement and water are added to a plutonium-bearing material to create a concrete or grout material form.

Ceramification—A process in which an inorganic oxide is heated at high temperatures to the point at which oxide particles begin to fuse together. This forms a ceramic material.

Characterization—The determination of waste or residue composition and/or properties, whether by review of process knowledge, nondestructive examination or assay, or sampling and analysis, generally done to determine appropriate storage, treatment, handling, transportation, and disposal requirements.

Cold Ceramification—A process that stabilizes materials (e.g., residues) by converting them into chemically bonded phosphate ceramics.

Contact-handled waste—Packaged waste whose external surface dose rate does not exceed 200 mrem per hour.

Contamination—The deposition of undesirable radioactive material on the surfaces of structures, areas, objects, or personnel.

Criticality—The conditions in which a system is capable of sustaining a nuclear chain reaction.

Curie—The basic unit used to describe the intensity of radioactivity in a sample of material. The curie is equal to 37 billion disintegrations per second, which is approximately the rate of decay of 1 gram of the isotope radium-226. A curie is also a quantity of any radionuclide that decays at a rate of 37 billion disintegrations per second.

Decay (radioactive)—Spontaneous disintegration of the nucleus of an unstable atom, resulting in the emission of particles and energy.

Decontamination—Removal of unwanted radioactive or hazardous contamination by a chemical or mechanical process.

Depleted uranium—Uranium that, through the process of enrichment, has been stripped of most of the uranium-235 it once contained, so that it has more uranium-238 than natural uranium. It is used as shielding, in some parts of nuclear weapons, and as a raw material for plutonium production.
Dissolution—A process in which a material is dissolved.

DOE Orders—Requirements internal to the U.S. Department of Energy that establish DOE policy and procedures, including those for compliance with applicable laws.

Dose (or radiation dose)—A generic term that means absorbed dose, effective dose equivalent, committed effective dose equivalent, or total effective dose equivalent as defined elsewhere in this glossary.

Dose rate—The radiation dose delivered per unit time (e.g., rem per year).

Dry/Repacks—This category includes all inorganic residues resulting from production operations. (Formerly called *inorganics*.)

Effluent—A gas or liquid discharged into the environment.

Enriched uranium—Uranium that has greater amounts of the isotope uranium-235 than occur naturally. Naturally occurring uranium is nominally 0.720 percent uranium-235.

Environmental Assessment (EA)—A concise public document that a Federal agency prepares under the National Environmental Policy Act (NEPA) to provide sufficient evidence and analysis to determine whether a proposed agency action would require preparation of an environmental impact statement (EIS) or a finding of no significant impact. A Federal agency may also prepare an EA to aid its compliance with NEPA when no EIS is necessary or to facilitate preparation of an EIS when one is necessary.

Environmental Impact Statement (EIS)—A document required of Federal agencies by NEPA for major Federal actions or legislation with potential for significantly affecting the environment. A tool for decisionmaking, it describes the potential impacts of the proposed and all reasonable alternative actions.

Fissile material—Any material fissionable by thermal (slow) neutrons; the two primary fissile isotopes are uranium-235 and plutonium-239.

Fission—The splitting or breaking of a nucleus into at least two other nuclei and the release of a relatively large amount of energy. Two or three neutrons are usually released during this type of transformation.

Fission products—The nuclei produced by fission of heavy elements, and their radioactive decay products.

Fissionable material—Commonly used as a synonym for fissile material, the meaning of this term has been extended to include material that can be fissioned by fast neutrons, such as uranium-238.

Frit—Finely ground glass used as feedstock input for vitrification.

Ful Flo filter—A filter used to remove particulates that are 1 to 5 microns and larger, from liquid
streams. The filter is packed with activated charcoal/graphite or fiberglass.

Gamma ray—Very penetrating electromagnetic radiation of nuclear origin. Except for origin and energy level, identical to x-rays. Electromagnetic radiation frequently accompanying alpha and beta emissions as radioactive materials decay.

Geologic repository—A place to dispose of radioactive waste deep beneath the earth's surface.

Glovebox—Large enclosure that separates workers from equipment used to process hazardous material while allowing the workers to be in physical contact with the equipment; normally constructed of stainless steel with large acrylic/lead glass windows. Workers have access to equipment through the use of heavy-duty, lead-impregnated rubber gloves, the cuffs of which are sealed in portholes in the glovebox windows.

Half-life—The time in which one-half of the atoms of a particular radioactive substance disintegrate to another nuclear form. Half-lives vary from millionths of a second to billions of years.

Hazardous material—A substance or material in a quantity and form that may pose an unreasonable risk to health and safety or property when transported in commerce.

Hazardous waste—Under the Resource Conservation and Recovery Act, a solid waste, or combination of solid wastes, which because of its quantity, concentration, or physical, chemical, or infectious characteristics may (a) cause or significantly contribute to an increase in mortality or an increase in serious irreversible, or incapacitating reversible, illness or (b) pose a substantial present or potential hazard to human health or the environment when improperly treated, stored, transported, disposed of, or otherwise managed. Source, special nuclear material, and by-product material, as defined by the Atomic Energy Act, are specifically excluded from the definition of solid waste.

High-efficiency particulate air (HEPA) filter—A filter with an efficiency of at least 99.95 percent used to remove particles from air exhaust streams prior to releasing to the atmosphere.

High-level waste—The highly radioactive waste material that results from the reprocessing of spent nuclear fuel, including liquid waste produced directly from reprocessing and any solid waste derived from the liquid that contains a combination of transuranic and fission product nuclides in quantities that require permanent isolation. High-level waste may include the highly radioactive material that the NRC, consistent with existing law, determines by rule requires permanent isolation.

Immobilization—A process that converts plutonium-bearing material to a stable form for disposal.

Isotopes—Different forms of the same chemical element that differ only by the number of neutrons in their nucleus. Most elements have more than one naturally occurring isotope. Many isotopes that do not exist in nature have been produced in reactors and particle accelerators.
Item Description Code (IDC)—At Rocky Flats, solid residues are categorized by type of material and identified by these IDCs.

Lag Storage—Short-term storage for logistical reasons.

Low enriched uranium (LEU)—Uranium enriched until it consists of up to 20 percent uranium-235. Used as nuclear reactor fuel.

Low-level waste—Any radioactive waste that is not spent fuel, high-level, or transuranic waste, and does not contain hazardous waste constituents.

Management Approach—Refer to strategic management approach.

Millirem (mrem)—One-thousandth of a rem.

Mitigate—To take practicable means to avoid or minimize the potentially harmful effects of an action (e.g., environmental harm from a selected alternative).

Mixed Oxide (MOX)—A physical blend of uranium oxide and plutonium oxide which can be used as fuel in a nuclear reactor.

Mixed waste—Waste that contains both "hazardous waste" and "radioactive waste" (as defined in this glossary).

Muffle furnaces—Small (approximately 1 cubic foot) oven-like electrically-heated units, lined with refractory material, which can be used to heat material placed onto trays inserted into the unit.

National Environmental Policy Act (NEPA)—A Federal law, enacted in 1970, that requires the Federal Government to consider the environmental impacts of, and alternatives to, major proposed actions in its decisionmaking processes. Commonly referred to by its acronym, NEPA.

Neutron—An uncharged elementary particle with a mass slightly greater than that of the proton. Neutrons are found in the nucleus of every atom heavier than hydrogen-1.

Nonproliferation—Efforts to prevent or slow the spread of nuclear weapons and the materials and technologies used to produce them.

Normal operation—All normal conditions and those abnormal conditions that frequency estimation techniques indicate occur with a frequency greater than 0.1 events per year.

Nuclear weapon—Any weapon in which the explosion results from the energy released by reactions involving atomic nuclei.

Nuclide—A species of atom characterized by the constitution of its nucleus and hence by the number of protons, the number of neutrons, and the energy content.
Package—For radioactive materials, the packaging together with its radioactive contents as presented for transport (the packaging plus the radioactive contents is the package).

Packaging—For radioactive materials, it may consist of one or more receptacles, absorbent materials, spacing structures, thermal insulation, radiation shielding, and devices for cooling or absorbing mechanical shock to ensure compliance with U.S. Department of Transportation regulations.

Plutonium—A manmade fissile element. Pure plutonium is a silvery metal that is heavier (for a given volume) than lead. Material rich in the plutonium-239 isotope is preferred for manufacturing nuclear weapons. Plutonium-239 has a half-life of 24,000 years.

Plutonium residues—Material containing plutonium that was generated during the separation and purification of plutonium or during the manufacture of plutonium-bearing components for nuclear weapons.

Process—Any method or technique designed to change the physical or chemical character of the residue or scrub alloy to render them less hazardous, safer to transport, store or dispose of, and/or less attractive for theft.

Purex—An acronym for Plutonium-Uranium Extraction, the name of the chemical process usually used to remove plutonium and uranium from spent nuclear fuel, irradiated targets, and other nuclear materials. As used in this EIS, the PUREX process is used to separate out plutonium from residues or scrub alloy.

Pyro-oxidation—A process in which sodium carbonate is heated with a plutonium-bearing salt matrix to a high temperature to convert any reactive metals in the matrix to nonreactive oxides.

Pyrophoric—Pyrophoric liquids are any liquids that ignite spontaneously in dry or moist air at or below 54.4 degrees Centigrade (130 degrees Fahrenheit). A pyrophoric solid is any solid material, other than one classed as an explosive, which under normal conditions is liable to cause fires through friction, retained heat from manufacturing or processing, or which can be ignited readily and when ignited burns so vigorously and persistently as to create a serious transportation, handling, or disposal hazard. Included are spontaneously combustible and water-reactive materials.

Radiation (ionizing)—Energy transferred through space or other media in the form of particles or waves. In this document, we refer to ionizing radiation that is capable of breaking up atoms or molecules. The splitting, or decay, of unstable atoms emits ionizing radiation.

Radioactive waste—Waste that is managed for its radioactive content; solid, liquid, or gaseous material that contains radionuclides regulated under the Atomic Energy Act of 1954, as amended and of negligible economic value considering costs of recovery.

Radioactivity—The spontaneous emission of radiation from the nucleus of an atom. Radionuclides lose particles and energy through this process of radioactive decay.

Radioisotopes—Radioactive nuclides of the same element (same number of protons in their nuclei) that differ in the number of neutrons.
Radionuclide—A radioactive element characterized according to its atomic mass and atomic number that can be manmade or naturally occurring.

Raschig (glass) rings—These residues originated from Process Vent Scrubber Systems and in plutonium solutions processing production tanks. The rings are small, hollow, borosilicate glass cylinders that are used to absorb neutrons and thus prevent criticality in the aforementioned production tanks. These rings are coated with insoluble plutonium compounds.

Record of Decision (ROD)—A document prepared in accordance with the requirements of 40 CFR 1505.2 and 10 CFR 1021.315 that provides a concise public record of DOE’s decision on a proposed action for which an EIS was prepared. A ROD identifies the alternatives considered in reaching the decision, the environmentally preferable alternative, factors balanced by DOE in making the decision, whether all practicable means to avoid or minimize environmental harm have been adopted, and, if not, why they were not.

rem (Roentgen Equivalent Man)—A unit of radiation dose. Dose in rem is numerically equal to the absorbed dose in rad multiplied by a quality factor, distribution factor and any other necessary modifying factors (1 rem = 0.01 sievert).

Repackage—A process in which some residue materials may be removed from their current packaging containers and placed in new containers for improved safe, secure storage or to meet packaging requirements for shipment.

Resource Conservation and Recovery Act (RCRA) as Amended—The statute or law that establishes, among other things, a system for managing hazardous waste from its generation until its ultimate disposal.

Risk—Expression of an impact that considers both the probability of that impact occurring and the consequences of the impact if it does occur.

Risk assessment (chemical or radiological)—The qualitative and/or quantitative evaluation performed in an effort to define the risk posed to human health and/or the environment by the presence or potential presence and/or use of specific chemical or radiological pollutants.

Safe, secure trailer (SST)—A specially designed semitrailer, pulled by a specially designed tractor, that is used for the safe, secure transportation of cargo containing nuclear weapons or special nuclear material.

Safeguards termination limit (STL)—Concentrations of plutonium in materials (by weight percent), above which the material would be attractive as a source of plutonium.

Salt distillation—A process that separates transuranic materials from a salt matrix by distilling the salt away from any metal oxides present in the salt.

Salt scrub—A process used to recover plutonium from salt residues. The salt is heated with a mixture of aluminum and magnesium. The magnesium reacts with plutonium chloride in the salt to form plutonium metal, which forms an alloy with the aluminum called scrub alloy.
Scrub alloy—A magnesium/aluminum/americium/plutonium metal mixture that was created as an interim step in plutonium recovery.

Shredding—A process in which materials are cut into small pieces, which have a combined surface area larger than the original materials.

Special nuclear material (SNM)—Plutonium, uranium enriched in the isotope 233 or in the isotope 235, and any other material that the Nuclear Regulatory Commission, pursuant to the provisions of the Atomic Energy Act of 1954, Section 51, determines to be special nuclear material.

Spent fuel standard—A term, coined by the National Academy of Sciences and modified by DOE, meaning that alternatives for the disposition of surplus weapons-usable plutonium should seek to make this plutonium roughly as inaccessible and unattractive for weapons use as the much larger and growing stock of plutonium in civilian spent nuclear fuel.

Stabilized residues—Plutonium residues that have been processed to make them chemically stable.

Transuranic—Any element whose atomic number is higher than that of uranium (that is, atomic number 92). All transuranic elements are produced artificially and are radioactive.

Transuranic waste—Waste contaminated with alpha-emitting radionuclides with half-lives greater than 20 years and concentrations greater than 100 nanocuries/gram at time of assay.

Uranium—The basic material for nuclear technology. It is a slightly radioactive naturally occurring heavy metal that is more dense than lead. Uranium is 40 times more common than silver.

Variance (from safeguards termination limits)—Removal of requirements for strict material control and accountability as special nuclear material when evaluations demonstrate that the proposed processing method for the material, the controls in place for normal handling of transuranic waste from the processing, and the limited quantity of special nuclear material present at any particular place and time preclude the need to take additional measures to address threats of diversion and theft.

Vitrification—A process that uses glass to encapsulate or agglomerate the plutonium contained in residues or scrub alloy in order to immobilize it.

Vulnerabilities—Conditions or weaknesses that may lead to radiation exposure to the public, unnecessary or increased exposure to the workers, or release of radioactive materials to the environment.

Waste Acceptance Criteria (WAC)—The requirements specifying the characteristics of waste and waste packaging acceptable to a disposal facility and the documents and processes the generator needs to certify that waste meets applicable requirements.

Waste classification—Wastes are classified according to DOE Order 5820.2A, “Radioactive Waste Management,” and include high-level waste, transuranic waste, and low-level waste.
Waste Isolation Pilot Plant (WIPP)—A facility in southeastern New Mexico being developed as the disposal site for transuranic and transuranic mixed waste, not yet in operation.

Waste management—The planning, coordination, and direction of those functions related to generation, handling, treatment, storage, transportation, and disposal of waste, as well as associated surveillance and maintenance activities.

Waste minimization—An action that avoids or reduces the generation of waste by source or toxicity reduction, improves energy usage, or recycles.

WIPP WAC—Performance based waste acceptance criteria that must be met to allow disposal at the Waste Isolation Pilot Plant (refer to “Waste Acceptance Criteria” and Waste Isolation Pilot Plant,” given above).
Appendix B

Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACB</td>
<td>Auxiliary Charcoal Bed</td>
</tr>
<tr>
<td>ALARA</td>
<td>As-Low-As-Reasonably-Achievable</td>
</tr>
<tr>
<td>APSF</td>
<td>Actinide Packaging and Storage Facility</td>
</tr>
<tr>
<td>CERCLA</td>
<td>Comprehensive Environmental Response Compensation and Liabilities Act</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CMR</td>
<td>Chemistry and Metallurgy Research Building (LANL)</td>
</tr>
<tr>
<td>CPP-603</td>
<td>Fuel Storage Building at INEEL</td>
</tr>
<tr>
<td>CSB</td>
<td>Canister Storage Building</td>
</tr>
<tr>
<td>DNFSB</td>
<td>Defense Nuclear Facilities Safety Board</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Energy</td>
</tr>
<tr>
<td>DWPF</td>
<td>Defense Waste Processing Facility</td>
</tr>
<tr>
<td>EBR</td>
<td>Experimental Breeder Reactor</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
</tr>
<tr>
<td>EM</td>
<td>Environmental Management</td>
</tr>
<tr>
<td>ES&H</td>
<td>Environment, Safety and Health</td>
</tr>
<tr>
<td>ETTP</td>
<td>East Tennessee Technology Park</td>
</tr>
<tr>
<td>FFTF</td>
<td>Fast Flux Test Facility</td>
</tr>
<tr>
<td>FMF</td>
<td>(Argonne West)</td>
</tr>
<tr>
<td>HEU</td>
<td>Highly-enriched Uranium</td>
</tr>
<tr>
<td>HSP</td>
<td>Health and Safety Procedure</td>
</tr>
<tr>
<td>IDC</td>
<td>Item Description Code</td>
</tr>
<tr>
<td>IFSF</td>
<td>Irradiated Fuel Storage Facility</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>IMNM EIS</td>
<td>Interim Management of Nuclear Materials EIS</td>
</tr>
<tr>
<td>INEEL</td>
<td>Idaho Engineering and Environmental Laboratory</td>
</tr>
<tr>
<td>IPABS</td>
<td>Integrated Planning, Accountability and Budgeting System</td>
</tr>
<tr>
<td>IPM</td>
<td>Implementation Plan Manager</td>
</tr>
<tr>
<td>IPMP</td>
<td>Integrated Project Management Plan</td>
</tr>
<tr>
<td>ISSC</td>
<td>Interim Safe Storage Criteria</td>
</tr>
<tr>
<td>LANL</td>
<td>Los Alamos National Laboratory</td>
</tr>
<tr>
<td>LEU</td>
<td>Low-enriched Uranium</td>
</tr>
<tr>
<td>LFL</td>
<td>Lower Flammability Limit</td>
</tr>
<tr>
<td>LLNL</td>
<td>Lawrence Livermore National Laboratory</td>
</tr>
<tr>
<td>LOI</td>
<td>Loss On Ignition</td>
</tr>
<tr>
<td>m³</td>
<td>Cubic Meters</td>
</tr>
<tr>
<td>MCO</td>
<td>Multi-canister Overpacks</td>
</tr>
<tr>
<td>MOX</td>
<td>Mixed Oxide</td>
</tr>
<tr>
<td>MSRE</td>
<td>Molten Salt Reactor Experiment</td>
</tr>
<tr>
<td>MTHM</td>
<td>Metric Tons Heavy Metal</td>
</tr>
<tr>
<td>MTU</td>
<td>Metric Tons Uranium</td>
</tr>
<tr>
<td>NDA</td>
<td>Non-detectable Activity</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NMSF</td>
<td>Nuclear Material Storage Facility (Sandia)</td>
</tr>
<tr>
<td>NMSS</td>
<td>Nuclear Material Stabilization and Storage Program</td>
</tr>
<tr>
<td>ORNL</td>
<td>Oak Ridge National Laboratory</td>
</tr>
<tr>
<td>PDM</td>
<td>Plutonium Disposition Methodology</td>
</tr>
<tr>
<td>PFP</td>
<td>Plutonium Finishing Plant</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PFP EIS</td>
<td>Plutonium Finishing Plant Stabilization Final Environment Impact Statement</td>
</tr>
<tr>
<td>PNL</td>
<td>Pacific Northwest Laboratory</td>
</tr>
<tr>
<td>POC</td>
<td>Pipe Overpack Component</td>
</tr>
<tr>
<td>PUREX</td>
<td>Plutonium Uranium Extraction</td>
</tr>
<tr>
<td>PuSAP</td>
<td>Plutonium Stabilization and Packaging Project</td>
</tr>
<tr>
<td>R&D</td>
<td>Research and Development</td>
</tr>
<tr>
<td>RBOF</td>
<td>Receiving Basin for Off-Site Fuels</td>
</tr>
<tr>
<td>RFETS</td>
<td>Rocky Flats Environmental Technology Site</td>
</tr>
<tr>
<td>RFP</td>
<td>Request For Proposals</td>
</tr>
<tr>
<td>RL</td>
<td>Richland</td>
</tr>
<tr>
<td>ROD</td>
<td>Record of Decision</td>
</tr>
<tr>
<td>SIMS</td>
<td>Safety Issues Management System</td>
</tr>
<tr>
<td>SNF</td>
<td>Spent Nuclear Fuel</td>
</tr>
<tr>
<td>SNM</td>
<td>Special Nuclear Material</td>
</tr>
<tr>
<td>SMP</td>
<td>Site Management Plan</td>
</tr>
<tr>
<td>SPS</td>
<td>Stabilization Packaging System</td>
</tr>
<tr>
<td>SRS</td>
<td>Savannah River Site</td>
</tr>
<tr>
<td>SRTC</td>
<td>Savannah River Technology Center</td>
</tr>
<tr>
<td>SS&C</td>
<td>Sand, Slag, and Crucible</td>
</tr>
<tr>
<td>STD</td>
<td>Standard</td>
</tr>
<tr>
<td>STL</td>
<td>Safeguards Termination Limits</td>
</tr>
<tr>
<td>TRU</td>
<td>Transuranic</td>
</tr>
<tr>
<td>TRUPACT</td>
<td>Transuranic Package Transporter</td>
</tr>
<tr>
<td>TVA</td>
<td>Tennessee Valley Authority</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>TWRSA</td>
<td>Tank Waste Remediation System</td>
</tr>
<tr>
<td>µmho</td>
<td>Micro-mho (a unit of conductance)</td>
</tr>
<tr>
<td>WAC</td>
<td>Waste Acceptance Criteria</td>
</tr>
<tr>
<td>WIPP</td>
<td>Waste Isolation Pilot Plant</td>
</tr>
<tr>
<td>WSRC</td>
<td>Westinghouse Savannah River Company</td>
</tr>
<tr>
<td>ZPPR</td>
<td>Zero Power Physics Reactor (ANL-West)</td>
</tr>
</tbody>
</table>
Appendix C

References

Appendix D
Summary of Commitments

Hanford Plutonium Finishing Plant

Pu Solutions

- **Commitment Statement:** Complete stabilizing and packaging plutonium solutions.
- **IP Commitment Number:** 106
- **Due Date:** December 2001

Pu Metals

- **Commitment Statement:** Complete brushing and repackaging of metal inventory.
- **IP Commitment Number:** 110
- **Due Date:** March 2001

Pu Oxide and Mixed Oxides > 30 wt% Pu + U

- **Commitment Statement:** Complete stabilizing and packaging of oxides > 30 wt%.
- **IP Commitment Number:** 111
- **Due Date:** May 2004

Plutonium Alloys

- **Commitment Statement:** Ship aluminum alloys to SRS or package for disposition to WIPP. Brushed and packaged remaining alloys at PFP.
- **IP Commitment Number:** 114
- **Due Date:** June 2001

Polycubes

- **Commitment Statement:** Complete stabilization and packaging of polycubes.
- **IP Commitment Number:** 115
- **Due Date:** August 2002

Residues

- **Commitment Statement:** Complete stabilization and packaging of residues.
- **IP Commitment Number:** 116
- **Revised Due Date:** April 2004

Hanford K-Basins

Spent Nuclear Fuel

- **Commitment Statement:** Begin fuel removal from the K-West Basin to the Cold Vacuum
IP Commitment Number: Drying Facility.
Due Date: 117W November 2000

• Commitment Statement: Complete fuel removal from the K-West Basin to the Cold Vacuum Drying Facility.
IP Commitment Number: 118W
Due Date: December 2002

• Commitment Statement: Begin fuel removal from the K-East Basin to the Cold Vacuum Drying Facility.
IP Commitment Number: 117E
Due Date: December 2002

• Commitment Statement: Complete fuel removal from the K-East Basin to the Cold Vacuum Drying Facility.
IP Commitment Number: 118E
Due Date: July 2004

• Commitment Statement: Begin K-Basin sludge removal.
IP Commitment Number: 119
Due Date: December 2002

• Commitment Statement: Complete K-Basin sludge removal.
IP Commitment Number: 120
Due Date: August 2004

Savannah River

Plutonium Solutions

• Commitment Statement: Begin converting pre-existing H-Canon Pu-239 solution to oxide.
IP Commitment Number: 201
Due Date: December 2001
Reason for Change: New commitment.

• Commitment Statement: Complete converting pre-existing H-Canyon Pu-239 solution to oxide.
IP Commitment Number: 202
IP Rev.1 Due Date: June 2002
Revised Due Date: December 2002

Metal and Oxide >30% Pu

• Commitment Statement: Resume Bagless Transfer System operation.
IP Commitment Number: 203
<table>
<thead>
<tr>
<th>Due Date:</th>
<th>Reason for Change:</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 2000</td>
<td>New commitment.</td>
</tr>
</tbody>
</table>

- **Commitment Statement:** Begin conceptual design for 235-F Stabilization subproject.
 - **IP Commitment Number:** 204
 - **Due Date:** July 2000
 - **Reason for Change:** New commitment.

- **Commitment Statement:** Complete conceptual design for 235-F Stabilization subproject.
 - **IP Commitment Number:** 205
 - **Due Date:** January 2001 - April 2001
 - **Reason for Change:** New commitment.

- **Commitment Statement:** Begin detail design for 235-F Stabilization subproject.
 - **IP Commitment Number:** 206
 - **Due Date:** March 2001 - August 2001
 - **Reason for Change:** New commitment.

- **Commitment Statement:** Begin construction for 235-F Stabilization subproject.
 - **IP Commitment Number:** 207
 - **Due Date:** July 2002 - April 2003
 - **Reason for Change:** New commitment.

- **Commitment Statement:** Begin operation of equipment for high firing and packaging plutonium in accordance with DOE-STD-3013-99.
 - **IP Commitment Number:** 208
 - **IP Rev. 1 Due Date:** December 2003
 - **Revised Due Date:** January 2005 - January 2007
 - **Reason for Change:** Revised plan to install 3013 capability in 235-F vice APSF.

Residues <30% Pu

- **Commitment Statement:** Resume HB-Line dissolution of SRS residues.
 - **IP Commitment Number:** 209
 - **IP Revision 1 Due Date:** September 2000
 - **Reason for Change:** New commitment.

- **Commitment Statement:** Begin converting SRS residue solution to oxide.
 - **IP Commitment Number:** 210
 - **Due Date:** January 2003
 - **Reason for Change:** New commitment.

- **Commitment Statement:** Complete dissolution of SRS pre-existing plutonium residues.
 - **IP Commitment Number:** 211
 - **Due Date:** September 2005
 - **Reason for Change:** New commitment.
Commitment Statement: Complete stabilization and packaging of Pu.
IP Commitment Number: 212
IP Rev. 1 Due Date: September 2004
Revised Due Date: June 2006 - June 2008
Reason for Change: This milestone reflects the completion of all Pu packaging at SRS. Delay is due to change in plans to install 3013 capability in 235-F vice APSF.

Special Isotopes

Commitment Statement: Complete Am/Cm Vitrification Project design.
IP Commitment Number: 213
Due Date: November 2001
Reason for Change: New commitment.

Commitment Statement: Delivery of in-cell vitrification equipment.
IP Commitment Number: 214
Due Date: May 2002
Reason for Change: New commitment.

Commitment Statement: Complete construction for Am/Cm Vitrification Project.
IP Commitment Number: 215
Due Date: October 2003
Reason for Change: New commitment.

Commitment Statement: Begin stabilization of Am/Cm solution.
IP Commitment Number: 216
Due Date: October 2004
Reason for Change: New commitment.

Commitment Statement: Begin vitrifying Am/Cm solution.
IP Commitment Number: 217
Due Date: January 2005
Reason for Change: New commitment.

Commitment Statement: Complete vitrifying Am/Cm solution.
IP Commitment Number: 218
IP Rev. 1 Due Date: September 2002
Revised Due Date: December 2005
Reason for Change: Delays in development of vitrification process.

Commitment Statement: Begin stabilization of pre-existing Np-237 solution.
IP Commitment Number: 219
Due Date: April 2005
Reason for Change: New commitment.
Commitment Statement: Complete stabilization of pre-existing enriched uranium solution and enriched uranium solution resulting from Mk-16/22 SNF dissolution.
IP Commitment Number: 220
IP Rev.1 Due Date: December 2005
Revised Due Date: December 2006
Reason for Change: Delay in availability of HB-Line.

Uranium

Commitment Statement: Complete DOE/TVA interagency agreement for Off-Specification Fuel program.
IP Commitment Number: 221
IP Revision 1 Due Date: August 2000
Reason for Change: New commitment.

Commitment Statement: Begin detail design for HEU Blend Down Project.
IP Commitment Number: 222
Due Date: October 2000
Reason for Change: New commitment.

Commitment Statement: Complete transfer of HEU solution to double-walled tank.
IP Commitment Number: 223
Due Date: September 2001
Reason for Change: New commitment.

Commitment Statement: Begin disposition of pre-existing enriched uranium solution and enriched uranium solution resulting from Mk-16/22 SNF dissolution.
IP Commitment Number: 224
Due Date: March 2003
Reason for Change: New commitment.

Commitment Statement: Complete disposition of pre-existing enriched uranium solution and enriched uranium solution resulting from Mk-16/22 SNF dissolution.
IP Commitment Number: 225
IP Rev.1 Due Date: December 2003
Revised Due Date: September 2005
Reason for Change: Delay in project start due to TVA Interagency Agreement delays.

Spent Nuclear Fuel

Commitment Statement: Complete Phase 3 of H-Canyon restart.
IP Commitment Number: 226
Due Date: June 2000
Reason for Change: New commitment.
RFETS Metal and Scrub Alloy

- **Commitment Statement:** Begin dissolution of RFETS scrub alloy.
 - **IP Commitment Number:** 228
 - **Due Date:** April 2001
 - **Reason for Change:** New commitment.

- **Commitment Statement:** Complete dissolution of RFETS scrub alloy.
 - **IP Commitment Number:** 229
 - **IP Rev.1 Due Date:** May 2002
 - **Revised Due Date:** September 2001
 - **Reason for Change:** Accelerated in new canyon baseline.

- **Commitment Statement:** Complete direct casting RFETS classified plutonium metal.
 - **IP Commitment Number:** 230
 - **Due Date:** March 2006
 - **Reason for Change:** New commitment.

Rocky Flats Environmental Technology Site

Solutions

- **Commitment Statement:** Drain eight additional actinide systems in B771 by September 2000.
 - **IP Commitment Number:** 301
 - **Due Date:** September 2000

- **Commitment Statement:** Complete removal of all liquids in B771 (including all non-actinide systems) by December 2001.
 - **IP Commitment Number:** 302
 - **Due Date:** December 2001

- **Commitment Statement:** Complete processing all of the B771 liquids by March 2002.
 - **IP Commitment Number:** 303
 - **Due Date:** March 2002

Metal and Oxide >30% Pu

- **Commitment Statement:** Start packaging metal or oxide into 3013 containers by October
Technical problems with qualification of inner can weld have caused delays.

Residues <30% Pu

- Commitment Statement: Complete repackaging of all salts by December 2000.
 - IP Commitment Number: 306
 - IP Rev. 2 Due Date: July 2000
 - Revised Due Date: December 2000
 - Reason for Change: Support accelerated closure of Building 707

- Commitment Statement: Complete repackaging of all ash by December 2000
 - IP Commitment Number: 307
 - Due Date: December 2000

- Commitment Statement: Complete repackaging all remaining low-risk residues to meet the ISSC by May 2002.
 - IP Commitment Number: 308
 - Due Date: May 2002

Oak Ridge

Metal and Oxide >30% Pu

- Commitment Statement: Repackage all plutonium metals and oxides to meet the metal and oxide storage standard.
 - IP Commitment Number: 401
 - Due Date: May 2002

Uranium

- Commitment Statement: Remove uranium deposit from Auxiliary Charcoal Bed.
 - IP Commitment Number: 402
 - Due Date: December 2000
Los Alamos National Laboratory

- **Commitment Statement:** Complete fuel and flush salt removal from MSRE by May 2002.
 - **IP Commitment Number:** 403
 - **Due Date:** May 2002

- **Commitment Statement:** Establish and identify 94-1 materials into programmatic and excess categories
 - **Responsible Manager:** Sujita Pierpoint, DP-223
 - **Applicable Facilities:** TA-55, CMR
 - **Commitment Deliverable:** A list of 94-1 excess and programmatic items.
 - **Due Date:** June 15, 2000

- **Commitment Statement:** Develop a risk baseline for legacy and newly generated materials, establish processes for maintaining baseline information and develop an approach for managing these risks.
 - **Responsible Manager:** Sujita Pierpoint, DP-223
 - **Applicable Facilities:** TA-55
 - **Commitment Deliverable:** Quantifiable risk associated with each item and prioritization of items for stabilization and/or processing
 - **Due Date:** July 31, 2000

- **Commitment Statement:** Apply Plutonium Disposition Methodology for disposition of residues.
 - **Responsible Manager:** Sujita Pierpoint, DP-223
 - **Applicable Facilities:** TA-55
 - **Commitment Deliverable:** Begin applying PDM to residues based on risk prioritization
 - **Due Date:** July 31, 2000

- **Commitment Statement:** Establish disposition plan for unsheltered containers.
 - **Responsible Manager:** Sujita Pierpoint, DP-223
 - **Applicable Facilities:**
 - **Commitment Deliverable:** A plan and schedule for stabilizing these containers.
 - **Due Date:** July 31, 2000

- **Commitment Statement:** Submit revision to LANL portion of the 2000-1 IP.
 - **Responsible Manager:** Sujita Pierpoint, DP-223
 - **Applicable Facilities:** TA-55
 - **Commitment Deliverable:** An integrated plan with milestones for stabilization and discard of remaining 94-1 inventory within the context of 2000-1.
 - **Due Date:** October 31, 2000

Lawrence Livermore National Laboratory
Metal and Oxide >30% Pu

- **Commitment Statement:** Complete plutonium metal and oxide repackaging by May 2002.
 - **IP Commitment Number:** 601
 - **Due Date:** May 2002

Residue <30% Pu

- **Commitment Statement:** Stabilize and package LLNL's ash residues by May 2002.
 - **IP Commitment Number:** 602
 - **Due Date:** May 2002

- **Commitment Statement:** Stabilize and package all other LLNL residues by February 2001.
 - **IP Commitment Number:** 603
 - **IP Rev. 2 Due Date:** February 2001
 - **Due Date:** May 2002
 - **Reason for Delay:** Delay in startup of plutonium packaging equipment.
Appendix E
IP Commitment Summary Schedule.

This attachment provides a top-level summary time line that shows the start and end dates of resolution activities for each safety issue.

The following pages in this attachment are an illustration of the scheduled completion dates for the top-level commitments made in the Recommendation 94-1 Implementation Plan, Revision 2, with arrows indicating the changes that have been made in Revision 3.
<table>
<thead>
<tr>
<th>Year</th>
<th>1997</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td></td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solutions
- **5/99**: Start prototype calciner
- **9/99**: Complete stabilization & packaging of Pu solutions
- **12/01**: New/Revised Strategy

Metals & Oxides >30 wt%
- **1/99**: Start thermal stabilization of Pu oxides & MOX >50 wt% Pu and / or Pu + U
- **3/01**: Complete brushing and repackaging of metal inventory
- **5/04**: Complete stabilization & packaging of oxides >30wt%
- **1/00**: Identify path forward for polycube stabilization
- **8/02**: Complete stabilization & packaging of polycubes
- **6/01**: Ship Al alloys to SRS or package for disposition to WIPP

Residues <30 wt%
- **4/04**: Complete stabilization and packaging of residues

May 25, 2000

- **New / Revised Strategy**
 - Completed late in 9/99
 - No Change
 - Complete
 - No Change
 - No Change
 - Complete (muffle furnace oxidation was selected)
 - No change
 - No change
 - No change

Appendix E

Richland 94-1 IP Commitments (Cont)

<table>
<thead>
<tr>
<th>Year</th>
<th>Event 1</th>
<th>Event 2</th>
<th>Event 3</th>
<th>Event 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td></td>
<td></td>
<td></td>
<td>7/04</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td>12/02 Begin fuel removal from KE-Basin</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

New/Revised Strategy
- No Change
- New interim date
- New interim date
- Delayed to optimize overall project
- Accelerated 19 months
- Accelerated 12 months

May 25, 2000
Rocky Flats 94-1 IP Commitments

<table>
<thead>
<tr>
<th>Year</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 4 6 8 10 12</td>
</tr>
<tr>
<td>Solutions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain 8 additional actinide systems in B771</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete removal of all liquids in B771 (including all non-actinide systems)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete draining & processing all B371 liquids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete processing all B771 liquids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start packaging metal & oxide into 3013 containers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repackage all metal and oxides (except classified plutonium metal) into 3013 containers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Revised Strategy**
 - No change
 - No Change
 - Complete
 - No change to completion date
 - Delays due to weld qualification, B371 shutdown, and installation of contamination control equipment.
 - No Change

May 25, 2000
Rocky Flats 94-1 IP Commitments (Cont)

<table>
<thead>
<tr>
<th>Year</th>
<th>Residues <30wt%</th>
<th>Revised Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>2 4 6 8 10 12</td>
<td>"Δ" Complete repackaging of all salts</td>
</tr>
<tr>
<td></td>
<td>2 4 6 8 10 12</td>
<td>"Δ" Complete repackaging of SS&C</td>
</tr>
<tr>
<td></td>
<td>2 4 6 8 10 12</td>
<td>"Δ" Complete repackaging ash</td>
</tr>
<tr>
<td></td>
<td>2 4 6 8 10 12</td>
<td>"Δ" Complete repackaging dry/repack residues</td>
</tr>
<tr>
<td></td>
<td>2 4 6 8 10 12</td>
<td>"Δ" Complete repackaging wet/combustibles (to include fluorides)</td>
</tr>
<tr>
<td></td>
<td>2 4 6 8 10 12</td>
<td>"Δ" Complete residue repackaging to meet ISSC</td>
</tr>
</tbody>
</table>

5/02
- Combined*
- Combined*
- Combined*

Fluorides will now be sent to WIPP with other wet/combustible residues*

<table>
<thead>
<tr>
<th>Date</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/00</td>
<td>"Δ" Complete repackaging of all salts</td>
</tr>
<tr>
<td>12/00</td>
<td>"Δ" Complete repackaging of SS&C</td>
</tr>
<tr>
<td>12/00</td>
<td>"Δ" Complete repackaging ash</td>
</tr>
<tr>
<td>5/02</td>
<td>"Δ" Complete repackaging dry/repack residues</td>
</tr>
<tr>
<td>5/02</td>
<td>"Δ" Complete repackaging wet/combustibles (to include fluorides)</td>
</tr>
<tr>
<td>5/02</td>
<td>"Δ" Complete residue repackaging to meet ISSC</td>
</tr>
</tbody>
</table>

* All remaining residue milestones now combined; same end date

May 25, 2000
Savannah River 94-1 IP Commitments

<table>
<thead>
<tr>
<th>Year</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>Revised Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solutions</td>
<td></td>
<td>6/02</td>
<td>12/02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Revised baseline</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Complete APSF construction (deleted)</td>
</tr>
<tr>
<td>Metal & Oxides >30wt%</td>
<td>12/01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3013 capability to be installed in 235-F by 12/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stabilize and package all SRS Pu metal & oxide in accordance with DOE-STD-3013-99</td>
</tr>
<tr>
<td>Residues <30wt%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Delayed due to linkage to 3013 capability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stabilization & package residues from dissolution of Pu residues</td>
<td>9/04</td>
<td></td>
<td>6/06</td>
<td>6/08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Isotopes</td>
<td>9/02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Revised baseline</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Complete Am/Cm solutions vitrification</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Complete stabilization of Np-237 solutions</td>
</tr>
<tr>
<td>Uranium</td>
<td></td>
<td>Complete disposition of pre-existing EU solutions and EU solution from MK16 & MK22 dissolution</td>
<td>12/03</td>
<td></td>
<td>9/05</td>
<td></td>
<td></td>
<td>TVA program delayed</td>
</tr>
<tr>
<td>Spent Nuclear Fuel</td>
<td>12/01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TVA program delayed</td>
</tr>
<tr>
<td>RFETS Residues & Scrub Alloy</td>
<td>5/02</td>
<td>Stabilize & package RFETS Pu residues & scrub alloy</td>
<td>6/06</td>
<td>6/08</td>
<td></td>
<td></td>
<td></td>
<td>Delayed due to linkage to 3013 capability</td>
</tr>
</tbody>
</table>

May 25, 2000
Appendix E
94-1 IP Commitments for Los Alamos, Livermore, Oak Ridge and INEEL

<table>
<thead>
<tr>
<th>Year</th>
<th>LANL</th>
<th>LLNL</th>
<th>OR</th>
<th>INEEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LANL

<table>
<thead>
<tr>
<th>Metal & Oxide</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>>30wt%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residues</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><30wt%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LLNL

<table>
<thead>
<tr>
<th>Metal & Oxide</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>>30wt%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residues</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><30wt%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OR

<table>
<thead>
<tr>
<th>Metal & Oxide</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>>30wt%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(MSRE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INEEL

<table>
<thead>
<tr>
<th>Spent Nuclear Fuel</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

May 25, 2000

- Inspect and repackage all legacy Pu metal & oxide (materials before 05/94) for long term storage criteria
- Stabilize legacy residues (materials before 05/94) recover plutonium as oxide & package for long term storage
- Repackaging of Pu metal & oxides to M&O standard
- Remove uranium deposits from Auxiliary Charcoal Bed
- Complete fuel & flush salt removal
This page intentionally left blank.
Appendix F
Listing of Completed Actions

This attachment lists all commitments completed to date.

Hanford PFP

Ensured all bottles containing Pu solutions are properly vented, 5/95
Stabilized 220 liters of chloride solutions, 9/95
Issued clean-out and stabilization EIS ROD, 6/96
Completed solution technology development, 4/96
Completed transfer of 22,700 liters of PUREX solutions to tank farms, 4/95
Began engineering studies for a new repackaging line, 9/95
Stabilized existing inventory of low organic residues in muffle furnaces, 6/95
Stabilized 46 cans of selected RFETS ash in muffle furnaces, 1/96
Initiated thermal stabilization of Pu oxides and MOX, 1/99.
Documented approach for ash disposition, 1/99.
Completed a characterization of plutonium solutions, 2/99.
Decision on shipping and/or processing approach for select 94-1 materials at alternative sites, 2/99.
Decision on process selection for solutions that could not be processed untreated through the production vertical denitration calciner, 2/99.
Documented analysis and decision for processing of the inventory of unalloyed plutonium metal to meet DOE-STD-3013, 2/99.
Initiate operation of the prototype vertical denitration calciner, 9/99.
Documented decision for polycubes stabilization path forward, 2/00.

Hanford SNF

Issued “Management of SNF from K-Basins” EIS ROD, 3/96
Developed K-Basins potential funding options and acquisition strategy, 3/95
Issued K-Basin EIS NOI, 3/95
Completed K-West Basin cofferdam installation, 2/95
Completed K-East Basin cofferdam installation, 4/95
Began fuel characterization in K-Basin hot cells, 4/95
Performed K-basin sludge removal demonstration along with cofferdam installation, 12/94
Issued K-Basin Integrated Path Forward Schedule providing details of major system acquisitions and materials movements, 4/95

Savannah River

Isolated Am/Cm solution storage tank from cooling water systems, 2/95
Issued the ROD for the F-Canyon Plutonium Solutions EIS, 2/95
Restarted F-Canyon Second Pu Cycle Solvent Extraction (Operational Readiness Reviews), 2/95
Re-examined the L-Basin corrosion coupons, 2/95
Increased surveillance of the Am/Cm solution storage tank, 3/95
Repackaged all 14 containers of Pu-238 solids, 3/95
Completed L-Basin sludge consolidation, 3/95
Issued the Interim Management of Nuclear Materials (IMNM) Final EIS, 10/95
Restarted FB-Line (Operational Readiness Reviews), 11/95
Issued a Conceptual Design Report for the Am/Cm Vitrification Project, 11/95
Repackaged all plutonium metal in contact with plastic, 11/95
Completed re-orientation of L-Basin fuel, 11/95
Issued the initial ROD for the IMNM Final EIS, 12/95
Restarted full F-Canyon operations (Operational Readiness Reviews), 2/96
Stabilized 303,000 liters of Pu solutions, 4/96
Completed SNF storage basin upgrades, 5/96
Stabilized all 46 containers of Pu-238 residues (concurrent with 94-1 scope), 6/96
Demonstrated direct casting for stabilization of miscellaneous Pu metal, 6/96
Completed RBOF fuel consolidation, 8/96
Stabilized all 3,500 gallons of Pu-242 solution, 12/96
Stabilized all 15,884 Mark-31 targets, 3/97
Installed digital radiography capability, 3/97
Stabilized all 83 containers of failed TRR and EBR-II SNF (concurrent with 94-1 scope), 6/97
Restarted H-Canyon dissolving of Mark-22 SNF (Operational Readiness Reviews), 7/97
Completed re-orientation of K-Basin fuel, 7/97
Started bagless transfer repackaging of Pu metal (Readiness Assessments), 8/97
Shipped all remaining high-assay Pu-238 offsite for program use (concurrent with 94-1 scope), 9/97
Started HB-Line dissolving of Pu-239 residues (Operational Readiness Reviews), 3/98
Restarted H-Canyon First Cycle Solvent Extraction (Readiness Assessments), 5/98
Dissolved all 128 containers of legacy Sand, Slag and Crucible residues, 7/98
Began HEU Solution Wash and Concentration in H-Canyon (Line Management Reviews), 8/98
Restarted F-Canyon 6.1D dissolver operations (Line Management Reviews), 8/98
Stabilized remaining 62 containers of TRR SNF (concurrent with 94-1 scope), 10/98
Implemented H-Canyon First Cycle Additional Criticality Controls (Readiness Assessment), 11/98
Completed dissolution of all 202 containers of legacy Pu-239 sweeping residues, 3/99
Began residue characterization in FB-Line (Line Management Reviews), 4/99
Dissolved 57 containers of RFETS SS&C residues transferred to the SRS, 4/99
Transferred SNM into the modified Building 235-F vault, 6/99
Completed bagless repackaging of all available plutonium metal, 7/99
Started HB-Line Low-Assay Plutonium dissolution (Readiness Assessment), 8/99
Started F-Canyon DU/Pu dissolution (Readiness Assessment), 8/99
Completed dissolution of approximately 500 Mark-22 spent fuel assemblies, 10/99
Completed dissolution of 1,249 DU/Pu sintered oxide fuel rods, 10/99
Started Low-Assay Plutonium transfers from HB-Line to H-Canyon Tank 8.2 (Readiness Assessment), 1/00
Declared K-Area Material Storage operationally ready (Operational Readiness Reviews), 1/00
Completed dissolution of all 39 containers of Low-Assay Plutonium (concurrent with 94-1 scope), 1/00

Rocky Flats

Completed NEPA analysis (an Environmental Assessment) for solution stabilization, 4/95
Started draining B771 hydroxide tanks and begin processing, 11/96
Completed draining four (4) B771 hydroxide tanks, 8/96
Completed B771 hydroxide precipitation process, 3/97
Started draining four (4) B771 high-level tanks and begin processing, 9/97
Started draining B371 tanks and begin processing, 12/96
Completed draining six (6) B371 Cat B tanks, 2/97
Completed draining one (1) B371 criticality tank, 5/97
Completed processing liquids from seven (7) B371 tanks, 6/97
Started tap and drain of B771 room/systems, 1/98
Completed processing liquids from the B771 high-level tanks and B371 bottles, 7/98
Completed draining four (4) B771 high-level tanks, 12/97
Completed draining of remaining B371 criticality line tanks, 2/98
Started tap and drain of B371 room/systems, 6/98
Completed draining and processing all B371 liquids, 6/99
Thermally stabilized the existing backlog of all known RFETS reactive Pu oxide (63 kgs), 1/97
Repackaged a total of 256 items in B707 where Pu is in direct contact with plastic, 11/95
Repackaged 1,602 Pu metal items not in direct contact, but in proximity to, plastic, 12/96
Repackaged all Pu metal in direct contact with plastic, 5/97
Conducted sampling and inspection to determine relative risk and for repackaging Pu metals and oxides in close proximity to plastic and other synthetic materials, 9/95
Vented 700 unvented residue drums, 12/95
Vented 2,045 residue drums with a potential for hydrogen gas generation, 9/95
Began stabilization by pyrochemical oxidation 6,000 kg of higher-risk salts, 1/98
Vented all inorganic residues, 12/95
Vented all wet/miscellaneous residues, 12/95
Began bottling and shipping 2,700 liters of HEU solutions offsite for stabilization, 8/96
Removed all HEU uranyl nitrate solutions (2,700 liters) from B886 and completed all shipments offsite, 11/96
Completed characterization of specified salt, combustibles, and IDC 368 to a 95/5 confidence level, 2/99
Completed stabilizing ion exchange resins, 3/99
Completed stabilizing ash residue IDC 333, 4/99
Completed stabilizing high risk salts, 7/99

Oak Ridge

Placed K-25/K-29 Category I deposits in a safe configuration, 12/97
Placed K-25/K-29 Category II deposits in a safe configuration, 1/98
Completed MSRE interim corrective measures; drain water from the ACB cell, partition the off-gas system, eliminate the water sources, 11/95
Los Alamos

Stabilized high-risk vault items to meet the long-term storage standards, 7/98

Completed peer review of packaging operations for long-term storage, 4/95
Integrated and demonstrated repackaging operations at the TA-55 Pu facility, 4/95
Began repackaging of Pu metal and oxide at the TA-55 Pu facility, 5/95
Stabilized 220 kgs of residues, 10/95
Developed risk-based, complex-wide categorization and prioritization criteria that all stored residues will be required to meet, 3/96
Performed a 100% inspection of vault inventory, 4/95
Recovered 100 neutron sources, 4/95
Processed 90% of analytical solutions, 8/95
Processed 100 kgs of sand, slag and crucible materials, 4/95
Processed 70 kgs of hydroxide solids, 4/95

Lawrence Livermore National Laboratory

Began inspection of Pu metal items, 4/95
Completed trade-off study to develop plans for the stabilization and packaging of ash/residues for long-term storage, 11/96

Idaho National Engineering and Environmental Laboratory

Moved an additional 189 SNF units from CPP-603 North and Middle Fuel Storage Facility to CPP-666, 9/95
Moved all SNF (6.84 metric tons) from CPP-603 North/Middle Basins to CPP-603, 8/96
Began movement of CPP-603 South Basin SNF, 5/95
Constructed and started CPP-603 dry storage overpacking from CPP-603, 7/97
Completed removal of all spent nuclear fuel from the CPP-603 South Basin, 4/00

Mound

Repackaged all Pu metal in direct contact with plastic, 9/96
Repackaged all Pu metals and oxides to meet the DOE metal and oxide storage standard, 3/97
Appendix G
Summary of 94-1 Research and Development Program

Background

Recommendation 94-1, Sub-recommendation (2), states:

"...a research program [should] be established to fill any gaps in the information base needed for choosing among the alternate processes to be used in safe interim conversion of various types of fissile materials to optimal forms for safe interim storage and the longer term disposition. Development of this research program should be addressed in the program plan called for by [the Board]."

The Department of Energy chartered a Research Committee through the Nuclear Materials Stabilization Task Group in March 1995, which developed and issued the 94-1 Research and Development Plan in November 1995.

To ensure the technology needs for stabilization continue to be addressed and that the R&D Plan reflects the current needs and status of the complex, the Plutonium Focus Area (PFA) was established by DOE in October 1995 under the DOE Idaho Operations Office (DOE-ID), with support from Lockheed Martin Idaho Technologies Company (LMITCO) and Argonne National Laboratory (ANL). As part of its responsibility, the PFA organized a Technical Advisory Panel (TAP) to update and revise the R&D Plan annually. The first update was issued in November 1996 and the most recent update, Revision 3 dated September 1998, has been issued. Since that time, the Plutonium Focus Area merged with the Nuclear Material Stewardship Project Office Technology Program and has become the Nuclear Materials Focus Area.

The R&D Plan provides a thorough evaluation of progress and R&D needs to meet 94-1 materials stabilization and storage commitments. The Plan also identifies R&D needs caused by interfacing DOE programs (i.e., DOE programs wherein information or requirements are communicated or agreed upon in support of nuclear materials stabilization and disposition), anticipates possible disposition paths for nuclear materials, and documents resulting research requirements. These requirements may change as disposition paths become more certain. Thus, this plan represents snapshots of progress at the time of Plan preparation.

Revision 0 of this Plan (November 1995) catalogued R&D needs to address nuclear material stabilization issues. Revision 1 (November 1996) narrowed the focus of those needs to more effectively target specific problem areas. Revision 2 (November 1997) indicated many medium risk and two high risk technologies in the complex wide stabilization baseline that placed the 94-1 milestone commitments at risk. Many of these risks have been currently mitigated, e.g., the pipe overpack component (POC) at RFETS for disposing residues, or by committing to more realistic milestone dates at Hanford and SRS. The current revision (September 1998) incorporates results from anticipated complex wide 94-1 IP changes that will be finalized in December 1998. In addition, it identifies areas that require more oversight by the Nuclear Materials Stewardship Program Office and DOE field offices, and areas that require further interface negotiation and policy evaluation by DOE.

The R&D Plan is circulated in the R&D community to generate comments and solutions to identified problems (promising technology solutions are submitted as white papers) in response to R&D gaps and programmatic
risks identified in the Plan. Additionally, Los Alamos National Laboratory (LANL), as the Lead Laboratory for 94-1 R&D, prepares a Program Plan in response to the recommendations from the R&D Plan. During FY 1998, the PFA TAP reviewed submitted white papers and provided peer reviews of LANL applied and core technologies. In 1999, the TAP was replaced by a Technical Advisory Group (TAG) which will peer review technical needs identified by the field offices and sponsored by NMFA.

The R&D Plan is closely coordinated with the 94-1 Implementation Plan (IP). Changes in baseline technology selection and in operational R&D need dates for technologies are extracted from the IP updates for inclusion in this R&D Plan. The original TAP assessed technical maturity of the sites’ baselines from the IP and, in instances where the TAP believed there were gaps or high programmatic risks in the new technology baseline, recommended backup technologies for inclusion in the R&D Plan.

Interfacing DOE programs are also integrated into the R&D Plan. Updates of various policy and technical documentation that have an impact on the stabilization of 94-1 materials are closely reviewed. In particular for this R&D Plan, materials stewardship, disposition, and safeguards termination requirements all impacted on the R&D requirements to ensure that technical issues are addressed and are consistent with U.S. policy.

This Appendix summarizes the current Research and Development Plan (September 1998, Revision 3) and provides further update to reflect ongoing program development efforts to prepare this IP revision.

1998 R&D Plan

As with previous revisions, the 1998 R&D Plan addresses five of the six material categories contained in the 94-1 IP, namely: plutonium solutions, plutonium metals and oxides, plutonium residues, highly enriched uranium, and special isotopes. R&D efforts related to spent nuclear fuel (SNF) stabilization are specifically excluded from the plan as these efforts are coordinated through the Technology Integration Technical Working Group, established by the Office of Spent Fuel Management.

Materials stabilization and other related research activities discussed in the FY 1998 Plan were categorized into 13 functional areas driven by requirements to stabilize and store materials. The areas are:

- Safe Storage Requirements
- Disposition Requirements
- Safeguards and Security Requirements
- Safety Requirements
- Plutonium Oxides Stabilization
- Plutonium Solutions Stabilization
- Plutonium Residues Stabilization
- Special Isotopes Stabilization
- Highly-Enriched Uranium Stabilization
- Packaging
- Surveillance and monitoring
- Core Technology
- Russian Technology Collaboration

94-1 Implementation Plan: Revision 3
Each category was linked to appropriate 94-1 IP milestones that are schedule requirement needs for R&D. Schedule needs for a specific category of R&D at a specific site were determined by evaluating the programs defined in IP changes provided by each site.

Down-selected Technologies

During 1998, seven technologies were identified as “down-selected” within the R&D Plan. The PuSPS stabilization technology (Milestone IP-3.2.022) was down-selected because RFETS will use muffle furnaces for the operation and the PuSPS front-end stabilization unit would not be installed (see 1998 R&D Plan, paragraph 4.1.4).

Four technologies applicable to RFETS pyrochemical salts were down-selected as the pipe overpack component (POC) option was chosen for the disposition of salts to WIPP. If stabilizing pyrochemical salts were the only objective, then salt oxidation would be the only required R&D activity. However, pyrochemical salt oxidation is currently operational at RFETS and meets the needs for stabilization. RFETS is continuing to characterize pyrochemical salts to determine their risk and therefore do not require pyro-oxidation for stabilization. (see 1998 R&D Plan, paragraph 4.3.2.4).

Two Packaging Technologies (Milestones IP-3.2-045 and IP-3.2-014) became baseline. LANL has demonstrated electrolytic decontamination on welded stainless steel storage containers. LLNL has developed and demonstrated a system to transfer plutonium oxide powder within a glovebox without generating dust. (see 1998 R&D Plan, paragraph 7.1.4).

Accomplishments and Path Forward

Safe Storage, Disposition and Safeguard Requirements

The 1998 R&D Plan developed seven recommendations in this area. Los Alamos developed the technical bases for extending the scope of the DOE-STD-3013-96 from 30wt% to 100wt% Pu/U and up to a storage temperature of 250°C. The revised DOE-STD-3013-99 was issued in December 1999.

On a parallel path, Los Alamos developed alternative moisture measurement methods to Loss on Ignition (LOI). The Supercritical Fluid Extraction (SFE) and Neutron Moderation methods were selected for implementation.

Ongoing work is directed at the impact of chloride ions in stored stabilized oxides on stress corrosion cracking of stainless steel 3013 containers.

EM is actively engaged with OFMD (NN-60) in the evaluation process for impure (Pu+U) materials with regard to OFMD’s acceptance criteria, and the stabilization program is monitoring waste disposal sites acceptance criteria to ensure the WAC and RCRA requirements are met.
Plutonium Stabilization
Eleven recommendations were developed for plutonium stabilization. Classified plutonium forms should be shipped to SRS from RFETS for declassification and storage.

LLNL ash residues must be monitored closely and a review of technical and programmatic progress of stabilization must be conducted. Cold-bonded phosphate ceramification should be maintained as a backup for direct disposal of RFETS ash to WIPP.

DOE has initiated actions to develop a material management organization which will address plutonium, uranium, heavy isotopes, and small quantities of materials not addressed in the 94-1 Implementation Plan.

Highly-enriched Uranium
No recommendations were developed in this section. See the 1998 R&D Plan, Section 6 for more details.

Packaging and Storage Technologies
Two recommendations were developed for packaging and storage technologies. Close tracking of the packaging portion of the PuSPS at RFETS is necessary to ensure the need date is met.

Core Technologies
No recommendations were developed for the Core Technology. However, the Core Technology mission will continue by providing scientific and technical support in resolving stabilization, storage, and transportation issues associated with plutonium materials management.

Summary
In conclusion, with the technical strategy developed for most of the 94-1 materials stabilization pathways, the future R&D effort will continue its focus on the following:

- PFP solutions (precipitation/other)
- Continued development of surveillance and monitoring techniques for long-term vault storage of SNM. Included are materials identification and surveillance activities as well as development of novel surveillance and monitoring technologies to support a long-term integrated surveillance program at storage sites.
- Core technology (maintain technical expertise for SNM). Current areas in which technical expertise is being maintained include materials science, gas-solid chemistry, separation science, surface science, smart materials, and chemical thermodynamics.
- Continued development of corrosion mechanisms for the safe storage of 3013 containers.