

Department of Energy

Washington, DC 20585 September 17, 1998

The Honorable John T. Conway Chairman Defense Nuclear Facilities Safety Board 625 Indiana Avenue, N.W. Suite 700 Washington, D.C. 20004

Dear Mr. Chairman:

Enclosed is *The Current and Planned Low-Level Waste Disposal Capacity Report, Revision 1.* The Department has developed this Report pursuant to its commitments in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-2 Implementation Plan, Revision 1 and the "Quarterly Progress Report for DNFSB Recommendation 94-2 January through March 1998."

The purpose of this Report is to assess whether the Department's low-level and mixed low-level waste disposal facilities have sufficient volumetric and radiological capacity to accommodate the waste that the Department expects to dispose at these facilities. This Report provides an update of a similar report, *The Current and Planned Low-Level Waste Disposal Capacity Report, Revision 0*, that the Department issued on July 30, 1998. The major difference between this Report and the 1996 report is the inclusion of a radiological assessment.

The Report concludes that existing and projected disposal facilities operated by the Department's Waste Management and Environmental Restoration Programs have sufficient volumetric capacity to accommodate all low-level waste that the Department projects will require disposal at DOE facilities except at Los Alamos National laboratory Technical Area-54. However, Los Alamos National Laboratory is preparing an environmental impact statement that addresses the development of additional disposal capacity at Technical Area-54, and there is sufficient available space for additional disposal capacity, pending the results of the environmental impact statement, to ensure sufficient volumetric disposal capacity would exist. A number of sites also appear to have significant volumetric disposal capacity surpluses.

Radiological capacity appears to be sufficient for disposal of the Department's low-level waste at all facilities except the Savannah River Site Intermediate Level Vault. However, given the conservatism of this analysis and uncertainties associated with the manner by which radiological data was extrapolated, it cannot be concluded that the Savannah River Site Intermediate Level Vaults would not be able to dispose of the waste expected to be disposed by the site. To address this issue, the Department will more closely evaluate both the radionuclide profiles of the waste projected to be disposed at the facility and the disposal limits of the facility to determine whether the capacity is likely to be exceeded under the Department's current disposal projections. If it appears the capacity would be exceeded, actions can be taken to reduce the radiological content in the waste, redirect the waste to another disposal facility, or modify the facility so that the additional radioactivity can be accommodated. Other disposal sites also appear to have significant radiological disposal capacity surpluses.

The Department has sufficient complex-wide radiological capacity for mixed low-level waste disposal through 2070. However, to accommodate the volume of mixed low-level waste projected to require disposal at the Department's Waste Management Program facilities, decisions must be made regarding use and expansion of the two mixed low-level waste disposal facilities. The Department anticipates issuing the Record of Decision for disposal of mixed low-level waste (and one for disposal of low-level waste) to address this issue by late 1998 or early 1999.

The Department has completed the actions related to commitment VIII.B.1.b.2 and proposes closure of the commitment. If you have any questions concerning this information, please contact me at (202) 586-7710 or Mark Frei at (202) 586-0370.

Sincerely,

James M. Oursday

James M. Owendoff Assistant Secretary for Environmental Management

Enclosure Appendix cc: Mark B.Whitaker, Jr., S-3.1 Carol Peabody, EM-4 The Current and Planned Low-Level Waste Disposal Capacity Report Revision 1

September 18, 1998

U.S. Department of Energy Office of Environmental Management This page left intentionally blank.

TABLE OF CONTENTS

EXECUTIVE SUMMARY ES-1
1.0 INTRODUCTION
1.1 Summary of Report Sections 1-1
1.2 History and Current Status of the DOE Low-Level Waste Disposal Configuration 1-2
1.3 Radiological Assessments 1-6
1.4 Waste Management Programmatic Environmental Impact Statement 1-7
1.5 Data Sources for Projected Volume and Radiological Profile
1.6 Assumptions 1-9
2.0 VOLUMETRIC PROJECTIONS AND CAPACITY
2.1 Volumetric Capacity Analysis Methodology 2-2
2.2 Projected Volumetric Disposal Needs 2-2
2.2.1 Projections from Programs Other than Environmental Restoration 2-3 2.2.2 Environmental Restoration Generation Projections 2-9
2.3 Low-Level Waste Disposal Volumes 2-13
 2.3.1 Low-Level Waste Disposal in Waste Management Program Disposal Facilities 2-13 2.3.2 Low-Level Waste Disposal in Environmental Restoration Disposal Facilities
2.3.3 Low-Level Waste Projections for Disposal in Commercial Disposal Facilities2-152.4 Mixed Low-Level Waste Disposal Volumes2-16
 2.4.1 Mixed Low-Level Waste Disposal in Waste Management Program Disposal Facilities
Disposal Facilities 2-17
2.4.3 Mixed Low-Level Waste Projections for Disposal in Commercial Disposal Facilities

TABLE OF CONTENTS (CONTINUED)

2.5 Base Case Comparison of Facility-Specific Volumetric Projections and Disposal	
Capacity	2-18
2.5.1 Waste Management Program Low-Level Waste Disposal Facilities	2-18
2.5.1.1 Hanford Site	
2.5.1.2 Idaho National Engineering and Environmental Laboratory	
Radioactive Waste Management Complex	2-21
2.5.1.3 Los Alamos National Laboratory Technical Area-54	
2.5.1.4 Nevada Test Site	
2.5.1.5 Oak Ridge Reservation Solid Waste Storage Area-6, Interim Waste	
Management Facility	2-24
2.5.1.6 Savannah River Site Waste Management Program Low-Level Waste	
Disposal Facilities	2-25
2.5.1.6.1 Low Activity Waste Vaults	
2.5.1.6.2 Intermediate Level Vault	
2.5.1.6.3 Slit Trenches	
2.5.2 Waste Management Program Mixed Low-Level Waste Disposal Facilities	2-28
2.5.2.1 Hanford Radioactive Mixed Waste Trenches 31 and 34	
2.5.2.2 Nevada Test Site Mixed Waste Disposal Unit	
ľ	
2.5.3 Environmental Restoration Program Disposal Facilities	2-28
2.5.3.1 Fernald Environmental Management Project	
2.5.3.2 Hanford Environmental Restoration Disposal Facility	
2.6 Alternative Scenario Comparison of Volumetric Projections and Disposal Capacity	
for To Be Determined Low-Level Waste and Waste to be Disposed in	
Not-Yet-Constructed Facilities	2-29
2.6.1 Hanford 200 Area Low-Level Burial Grounds	2-29
2.6.2 Nevada Test Site Areas 3 and 5 Radioactive Waste Management Sites	2-30
2.6.3 Savannah River Site Slit Trenches	2-30
2.6.4 Los Alamos National Laboratory Technical Area-54	2-30
2.7 Alternative Scenario Comparison of Volumetric Projections and Disposal Capacity	
for Mixed Low-Level Waste	
2.7.1 Hanford Radioactive Mixed Waste Trenches 31 and 34	2-31
2.7.2 Nevada Test Site Mixed Waste Disposal Unit	2-31

TABLE OF CONTENTS (CONTINUED)

3.0 H	RADIOLOGICAL PROJECTIONS AND CAPACITY ANALYSIS	3-1
3.1 N	Methodology of the Radiological Disposal Capacity Analysis	3-1
	3.1.1 Estimation and Projection of Radioactivity for Disposal	3-1
	3.1.2 Formulas Used in Sum-of-Fractions Capacity Analysis	
	3.1.3 Disposal Limits Used in the Radiological Capacity Analysis	
3.2 H	Radionuclide Inventory Projections for Low-Level and Mixed Low-Level Waste	3-5
3.3 \$	Sources of Uncertainty in the Analysis	3-9
	3.3.1 Uncertainty in Disposal Limits	3-9
	3.3.2 Uncertainty in Estimation and Projection of Radionuclide Inventories	
	with no Profiles	8-10
	3.3.2.2 Estimating Aggregate Radionuclide Profiles at Year 2070	, 10
	by Projection	8-10
	3.3.2.3 Assigning Disposal Locations for Waste Streams	8-10
3.4 B	Base Case Facility-Specific Radiological Projections and Capacities	8-11
5.1 D	3.4.1 Hanford Site 200 Area Low-Level Burial Ground	
	3.4.2 Idaho National Engineering and Environmental Laboratory Radioactive Waste	
	Management Complex	8-12
	3.4.3 Los Alamos National Laboratory Technical Area-54	
	3.4.4 Nevada Test Site Areas 3 and 5	
	3.4.5 Oak Ridge Reservation Interim Waste Management Facility	
	3.4.6 Savannah River Site	
	3.4.6.1 Low Activity Waste Vaults	
	3.4.6.2 Intermediate Level Vaults	
	3.4.6.3 Slit Trenches	8-14
3.5 A	Iternative Scenario Facility-Specific Radiological Projections and Capacities	8-15
		8-16
	3.5.1.1 Hanford Site 200 Area Low Level Burial Ground	8-16
	3.5.1.2 Los Alamos National Laboratory Technical Area	8-16
	3.5.1.3 Nevada Test Site Areas 3 and 5	
	3.5.2 Alternate Scenarios fro Mixed Low-Level Waste	
	3.5.2.1 Hanford Site 3	8-18
	3.5.2.2 Nevada Test Site	8-18

TABLE OF CONTENTS (CONTINUED)

4.0 SUMMARY AND CONCLUSIONS 4-1
4.1 Summary 4-1
4.2 Conclusions
APPENDIX A - Disposal Facility Summaries
APPENDIX B - Radiological Projection and Capacity Analysis
APPENDIX C - Key Radionuclides and Generation Processes
APPENDIX D-1 - LLW and MLLW Generated by Sources Other than Environmental Restoration and Planned for Disposal by Waste ManagementD-1
APPENDIX D-1 - Methodology Used to Estimate Radionuclide Profiles of Environmental Restoration Waste
APPENDIX E - Definitions and References E-1
APPENDIX F - Errata for Capacity Report Revision O F-1

Executive Summary

This Report was prepared as part of the U.S. Department of Energy (DOE) response to Defense Nuclear Facilities Safety Board Recommendation 94-2, Conformance with Safety Standards at DOE Low-Level Nuclear Waste and Disposal Sites. The purpose of this Report is to assess whether the Department's low-level and mixed low-level waste disposal facilities have sufficient volumetric and radiological capacity to accommodate the waste that the Department expects to dispose at these facilities. This Report provides an update of a similar report, *The Current and Planned Low-Level Waste Disposal Capacity Report, Revision 0*, that the Department issued on July 30, 1998. The major difference between this Report and the 1996 report is the inclusion of a radiological assessment. The Department continues to examine configurations of waste disposal sites based on programmatic needs and economic efficiencies. As changes occur to DOE's disposal configurations, DOE will continue to reexamine its volumetric and radiological capacities.

As a result of the analyses performed in this Report, based on an early 1998 snapshot of current Department waste projections and capacity information, the following conclusions can be drawn:

1. The Department has sufficient complex-wide volumetric capacity for low-level waste disposal through 2070. The radiological capacity through 2070 for low-level waste disposal also appears to be sufficient.

The existing and projected disposal facilities operated by the Department's Waste Management and Environmental Restoration Programs have sufficient volumetric capacity to accommodate all low-level waste that the Department projects will require disposal at DOE facilities except at Los Alamos National Laboratory Technical Area-54. However, Los Alamos National Laboratory is preparing an environmental impact statement that addresses the development of additional disposal capacity at Technical Area-54, and there is sufficient available space for additional disposal capacity pending, the results of the environmental impact statement, to ensure sufficient volumetric disposal capacity would exist. A number of sites also appear to have significant volumetric disposal capacity surpluses.

Radiological capacity appears to be sufficient for disposal of the Department's low-level waste at all facilities except the Savannah River Site Intermediate Level Vault. However, given the conservatism of this analysis and uncertainties associated with the manner by which radiological data was extrapolated, it cannot be concluded that the Savannah River Site Intermediate Level Vaults would not be able to dispose of the waste expected to be disposed by the site. To address this issue, the Department should more closely evaluate both the radionuclide profiles of the waste projected to be disposed at the facility and the disposal limits of the facility to determine whether the capacity is likely to be exceeded under the Department's current disposal projections. If it appears the capacity would be exceeded, actions can be taken to redirect the waste to another disposal facility, or modify the facility so that the additional radioactivity can be accommodated. Other disposal sites also appear to have significant radiological disposal capacity surpluses.

2. The Department has sufficient complex-wide radiological capacity for mixed low-level waste disposal through 2070. However, to accommodate the volume of mixed low-level waste projected to require disposal at the Department's Waste Management Program facilities, decisions must be made regarding use and expansion of these facilities.

The Department's Waste Management Program has two mixed low-level waste disposal facilities: Hanford Radioactive Mixed Waste Trenches 31 and 34 and Nevada Test Site Mixed Waste Disposal Unit. These two facilities provide the Department a total disposal capacity of 160,000 m³ and include room for further expansion. The Department has projected that 100,000 m³ of mixed low-level waste will be disposed at these two facilities through 2070. Therefore, it appears there is sufficient complex-wide volumetric capacity to dispose of the projected mixed low-level waste. However, there are currently limits at the facilities which affect their available site-specific capacity. At the Hanford Radioactive Mixed Waste Land Disposal Facility, the existing capacity (42,000 m³) is too small to accommodate all of the mixed low-level waste currently projected to be disposed there (99,000 m³) without expansion of the disposal cells. The Nevada Test Site Mixed Waste Disposal Unit appears to be large enough to accommodate all mixed low-level waste currently projected for disposal there (less than 1 m³). However, use of the excess capacity is limited because this facility is currently only allowed to accept mixed low-level waste generated within the State of Nevada. Both sites also possess available space to accommodate expansion, such that either site could provide sufficient volumetric disposal capacity.

3. Site-specific Composite Analyses have the potential to impact the conclusions of this *Report.*

An important purpose of this Report is to assess low-level waste disposal capacity from a radiological perspective. The analyses and conclusions of the Report are based on DOE radiological performance objectives for low-level waste disposal facilities as contained in DOE Order 5820.2A. A composite analysis assessing all radiological sources (e.g., pre-1988 waste disposal and areas of radiological contamination) at individual sites has not been addressed in this analysis. It would therefore be appropriate in a future revision of this Report to analyze the capacity of each low-level waste disposal facility while taking into account the effect on capacity resulting from other radiological sources at a site. The conclusions of such an analysis may be different than that presented in this Report.

4. Development of additional Environmental Restoration Program CERCLA disposal facilities may affect the available disposal capacity at existing Waste Management Program low-level and mixed low-level disposal facilities.

The Environmental Restoration Program expects to construct CERCLA disposal facilities at Idaho National Engineering and Environmental Laboratory and Oak Ridge Reservation. Additional facilities at other sites also may be needed. The potential effect that not constructing these facilities could have on disposal capacity was assessed in the alternative scenarios presented in this Report. Developing these facilities would allow more flexibility in using the remaining available capacity at existing Waste Management Program facilities.

5. The Department should make efforts to improve data quality and reduce uncertainties.

The Department's confidence in data quality will be improved during future versions of this Report. The uncertainty of many of the waste stream radionuclide profiles used in this Report can be reduced in those cases where the profiles are estimates based on composited, incomplete, and extrapolated radionuclide data. Uncertainty also can be reduced in developing improved volumetric projections. Additionally, uncertainty can be reduced by an improved understanding of disposal facility performance assessment attributes.

Current Waste Disposition Strategy

The Department's current plans for disposition of low-level and mixed low-level waste are shown in Table ES-1 below. A distinction is made between DOE's Waste Management Program and Environmental Restoration Program disposal facilities because the Environmental Restoration Program facilities, which are authorized under the Comprehensive Environmental Response, Compensation, and Liability Act can only receive waste generated from on-site environmental restoration activities. In contrast, the Waste Management Program facilities typically can receive waste from off-site generators.

	Estimated Volume (in r		
Projected Disposition	Low-Level Waste	Mixed Low-Level Waste	Total
Waste Management Program Disposal Facilities	1,500,000	100,000	1,600,000
Existing Environmental Restoration Program CERCLA Disposal Facilities	5,400,000	400	5,400,000
Environmental Restoration Program CERCLA Remediation Units	15,000	330,000	340,000
Not-yet-constructed Environmental Restoration Program CERCLA Disposal Facilities	390,000	35,000	420,000
To Be Determined	330,000	170,000	500,000
Commercial Disposal	510,000	78,000	590,000
Total	8,100,000	710,000	8,800,000

Table ES-1. Estimated Volume and Projected Disposition of DOE's Low-Level and Mixed Low-Level Waste

Note: Because of rounding, some totals may not equal the sum of their components.

1.0 INTRODUCTION

This report was prepared as part of the U.S. Department of Energy (DOE or the Department) response to Defense Nuclear Facilities Safety Board Recommendation 94-2, *Conformance with Safety Standards at DOE Low-Level Nuclear Waste and Disposal Sites*. The Defense Nuclear Facilities Safety Board expressed concern with several aspects of the Department's low-level waste disposal practices. On July 30, 1996, the Department issued *The Current and Planned Low-Level Waste Disposal Capacity Report, Revision 0,* to assess the adequacy of low-level waste disposal capacity at Department sites. Revision 0 provided life-cycle volumetric projections of DOE low-level waste and compared those projections with estimates of the current and planned volumetric disposal capacity at DOE disposal facilities. In addition, Revision 0 provided life-cycle volumetric projections of DOE mixed low-level waste.

The major difference between Revision 0 and this report, *The Current and Planned Low-Level Waste Disposal Capacity Report, Revision 1* (abbreviated in this document as the Report), is the inclusion of radiological information. In addition, Revision 1 updates the life-cycle volumetric projections of DOE low-level and mixed low-level waste and assesses the capacity of Department facilities to dispose of low-level and mixed low-level waste without exceeding volumetric capacity and radiological capacity limits.

1.1 Summary of Report Sections

Chapter 1.0 discusses the current history and configuration of the Department's low-level waste disposal operations, the radiological assessments process, the recently issued *Waste Management Programmatic Environmental Impact Statement* (issued in May 1997), and the data sources and assumptions used for this Report. Chapter 2.0 discusses the projected volumetric content and capacity of DOE low-level and mixed low-level waste disposal facilities. Commercial disposal of DOE low-level and mixed low-level waste is briefly discussed. Chapter 3.0 discusses the projected radiological content and capacity of DOE low-level and mixed low-level waste is briefly discussed. Chapter 3.0 discusses the projected radiological content and capacity of DOE low-level and mixed low-level waste disposal facilities for key radionuclides, and describes the methodology used to assess radiological capacity. In both Chapters 2.0 and 3.0, alternative scenarios for disposal of waste for which a disposal site has not yet been selected are discussed and the resulting projected volumetric and radiological effects on various facilities' capacities are discussed. Chapter 4.0 provides the summary and conclusions of the report.

Appendix A provides a description of the Department's low-level waste disposal facilities considered in this Report and scaling factor determinations for ground-water pathway radionuclide concentration limits. Appendix B provides results from analyses of disposal facility radiological capacity. Appendix C provides a discussion of the key radionuclides and the processes within the Department that generate them. Appendix D provides summaries of the methods used to determine radioactivity projected to be disposed at various facilities. Appendix E provides definitions, acronyms, and references. Appendix F provides errata

for Revision 0 of this Report (Revision 0 can be viewed at http://www.em.doe.gov/em30/ wastrept.html).

1.2 History and Current Status of the DOE Low-Level Waste Disposal Configuration

Initially, the Department's predecessor, the Atomic Energy Commission, operated the only facilities for disposal of both commercial and defense programs' low-level waste. When commercial low-level waste disposal facilities began to operate, the Atomic Energy Commission shipped waste to these facilities to encourage and sustain their development. After the closure of several commercial disposal facilities in 1979, the Department directed all its sites to dispose of low-level waste within the DOE complex. DOE sites unable to dispose of their waste in on-site disposal facilities negotiated with other DOE field offices and arranged to ship low-level waste to other DOE sites. In 1979, the Department issued a policy statement directive requiring all DOE field offices and the Naval Reactors program to stop disposing of low-level waste at commercial facilities ("Redirection of DOE Contractor Waste Formerly Sent to Commercial Burial Sites," November 19, 1979, U.S. Department of Energy). The policy statement also required the Naval Reactors program to redirect low-level waste shipments to Savannah River Site, directed other defense wastes to Los Alamos National Laboratory and Nevada Test Site, and specified that wastes generated at non-defense facilities were to be sent to Hanford Site and Idaho National Engineering and Environmental Laboratory. These initial programmatic and mission considerations, rather than facility-specific performance factors, were the primary influences on the current waste management configuration. Nevada Test Site and Los Alamos National Laboratory were chosen for disposal of DOE defense-generated waste because of their historical defense program affiliations. Because of its reactor testing and other nuclear research missions, Idaho National Engineering and Environmental Laboratory were selected as the disposal site for research-generated low-level waste. Hanford Site was chosen as an alternate disposal site to Idaho National Engineering and Environmental Laboratory and a disposal facility for west coast Naval Reactors program waste. Savannah River Site was chosen to receive Naval Reactors program low-level waste and non-tritium contaminated low-level waste generated at Mound Plant.

Over time, increasingly strict disposal site waste acceptance criteria and State involvement required Idaho National Engineering and Environmental Laboratory, Los Alamos National Laboratory, and Oak Ridge Reservation to stop accepting off-site low-level waste for disposal. Table 1.1 lists the DOE sites that currently accept off-site low-level waste for disposal and off-site waste generators. Figure 1.1 details the Department's current low-level waste disposal configuration.

Disposal Site	Off-Site V	Waste Generator
Savannah River Site	Bettis Atomic Power Laboratory, PA Knolls Atomic Power Laboratory, NY Newport News Shipbuilding, VA	Norfolk Naval Shipyard, VA Portsmouth Naval Shipyard, ME
Nevada Test Site ¹	Aberdeen Proving Ground, MD Army Industrial Operations Command Defense Nuclear Agency Energy Technology Engineering Center, CA Fernald Environmental Management Project, OH General Atomics, CA Grand Junction Office, CO ³ Lovelace Respiratory Research Institute, NM Kansas City Plant, MO	Lawrence Livermore National Laboratory, CA Mound Plant, OH Oak Ridge Reservation, TN ³ Pantex Plant, TX Reactive Metals, Inc., OH Rocky Flats Environmental Technology Site, CO Sandia National Laboratories,- Livermore, CA Sandia National Laboratories - Albuquerque, NM
Hanford Site ²	Ames Laboratory, IA Argonne National Laboratory-East, IL (Includes New Brunswick Lab- Illinois) Babcock & Wilcox, Battelle Columbus Laboratory, OH Bettis Atomic Power Laboratory, PA Brookhaven National Laboratory, NY Environmental Measurements Laboratory), NY Energy Technology Engineering Center, CA Federal Energy Technology Center - Pittsburgh, PA Fermi National Accelerator Laboratory, IL General Atomics, CA	Knolls Atomic Power Laboratory, NY and CT Lawrence Berkeley Laboratory, CA Laboratory for Energy Related Health Research, CA Massachusetts Institute of Technology, MA National Renewable Energy Laboratory, CO National Institute of Standards & Technology, Paducah Gaseous Diffusion Plant, KY Pearl Harbor Naval Shipyard, HI Portsmouth Gaseous Diffusion Plant, OH Princeton Plasma Physics Laboratory, NJ Puget Sound Naval Shipyard, WA Rocky Flats Environmental Technology Site, CO Stanford Linear Accelerator Center, CA University of Utah University of California, Lo Angeles

Table 1-1. Current DOE Off-Site Waste Generators and Disposal Sites

1 - Sites with completed applications to ship waste to the Nevada Test Site. Additional facilities that have applications in-progress, and some facilities which are approved by the DOE to ship to Nevada Test Site, but which have not submitted an application, are not included in the list.

2 - Some listed sites have not sent waste to date; these sites are approved generators, however, currently only planning to send waste to the Hanford Site.

3 - Approved by the Department, but not yet allowed to ship, pending Records of Decision from the *Waste Management Programmatic Environmental Impact Statement*.

Data Source: Personal communication with Robert Campbell (EM-36), July 1998.

Figure 1-1. Current and Planned Configuration for Department Low-level waste Disposal

Currently, the Department disposes of operations-generated low-level waste at six sites: Hanford Site, Idaho National Engineering and Environmental Laboratory, Los Alamos National Laboratory, Nevada Test Site, Oak Ridge Reservation, and Savannah River Site. The Waste Management operated low-level waste disposal facilities at Nevada Test Site, Hanford Site, and Savannah River Site currently dispose of off-site low-level waste. The other DOE low-level waste disposal facilities do not currently accept significant quantities of off-site low-level waste for disposal. Over the last 10 years, approximately 65,600 m³ of low-level waste was disposed annually at disposal facilities located at these six sites. The Department also continues to ship low-level waste to commercial disposal facilities.

The Department has plans to close the currently-operating low-level waste disposal facility at Idaho National Engineering and Environmental Laboratory by 2006. The Idaho National Engineering and Environmental Laboratory low-level waste projected to be generated after 2006 would be disposed elsewhere. Similarly, the low-level waste disposal facility at Oak Ridge Reservation (located at the Oak Ridge National Laboratory) plans to close the low-level waste disposal facility at the end of 1998, and the projected Oak Ridge Reservation low-level waste would have to be disposed elsewhere.

The Environmental Restoration Disposal Facility at the Hanford Site and the on-site disposal facility at the Fernald Environmental Management Project are currently operational, and have begun disposing of waste. These facilities will only accept low-level waste and, in the case of Hanford, treated mixed low-level waste generated from certain Environmental Restoration Program on-site remediation and decommissioning activities. Both facilities are designed and authorized to accept the full volume of low-level waste (within facility waste acceptance criteria) that is generated by the environmental restoration activities at these sites. The Department has proposed to build Environmental Restoration Program low-level and mixed low-level waste disposal cells at Oak Ridge Reservation and Idaho National Engineering and Environmental Laboratory. Because the decisions to build these cells are pending, the waste projected to go to these two cells has been categorized *to be determined* for the purposes of this report.

For the purposes of this analysis, low-level and mixed low-level waste for which a management plan has been finalized is identified as the *base case*. Low-level and mixed low-level waste for which a management plan has not been finalized, and therefore for which a planned disposal site has not yet been identified, is identified as to be determined waste. To be determined waste includes waste from environmental restoration projects, and as noted above, the low-level waste resulting from operations after the planned closure of disposal facilities at Idaho National Engineering and Environmental Laboratory and Oak Ridge Reservation. In order to assess the potential impact of disposal of this waste on the existing DOE low-level and mixed low-level waste disposal configuration, a series of alternative scenarios was developed. For the purposes of the analysis, the *to be determined* waste was assumed to be disposed at Hanford, Los Alamos National Laboratory, Nevada Test Site, and Savannah River Site Slit Trenches as a form of sensitivity analysis and for information in future decision making. In the alternative scenario, the to be determined waste is added to the waste projected to be disposed at these facilities. Other disposal facilities were not considered due to impending closure, lack of capacity, or other operational reasons. However, no decision has been made as to the disposition of the to be determined waste. Such decisions will be made following the issuance of low-level and mixed

low-level waste disposal records of decision under the *Waste Management Programmatic Environmental Impact Statement*.

DOE has mixed low-level waste disposal facilities constructed at two sites: Hanford Site and Nevada Test Site. For the purposes of this Report, mixed low-level waste to be disposed at Department disposal facilities, excluding mixed low-level waste to be disposed commercially, was grouped together for analysis of disposal at each of the two current facilities. As noted above, however, this was done to examine volumetric and radiological capacities and does not reflect decisions that will be made by issuing the low-level and mixed low-level waste disposal records of decision under the *Waste Management Programmatic Environmental Impact Statement*.

For the purposes of this Report, analyses of radiological capacity required the assessment of the actual dimensions, or footprint, of the disposal facilities (see Appendix A). A considerable portion of the current and planned disposal capacity was known to be available, but was not sufficiently designed to identify the footprint. In these cases, conservative assumptions were made to identify the probable footprint, which may result in lower projected capacities than may actually be available in the future when detailed design of the facilities is completed. Some differences in the volumetric capacity numbers between Report revisions has also resulted due to evolution of planning and design activities at the sites.

1.3 Radiological Assessments

Each Department low-level waste disposal facility has its own infrastructure, management structure, and waste acceptance criteria to meet site-specific disposal requirements. In 1988, the Department issued Order 5820.2A *Radioactive Waste Management*, which required rigorous characterization of low-level waste and the development of radiological performance assessments for each low-level waste disposal facility. The performance assessment process analyzes facility characteristics to demonstrate that disposal operations will not exceed radiological performance objectives for protection of workers, the public, and the environment. These performance objectives are delineated in terms of potential dose, and consider potential disposal facility effluents and the doses that could result from inadvertent intrusion into the facility after institutional controls have ended. The scope of performance assessments includes any low-level waste disposed after the issuance of Order 5820.2A. Similarly, the radiological analyses in this Report do not include pre-1988 disposed low-level waste (although some pre-1988 disposed low-level waste is included in the Report's *volumetric* analyses). Furthermore, this Report does not analyze low-level waste disposal facilities that are no longer in operation (i.e., have no current or planned capacity).

On-site disposal cells developed by the Environmental Restoration program for disposal of wastes from site clean-up activities are authorized under the Comprehensive Environmental Response, Compensation, and Liability Act. Per Departmental policy and under the Department's clean-up authorities, such on-site disposal cells for waste generated under Comprehensive Environmental Response, Compensation, and Liability Act cleanup authority are not required to prepare a performance assessment, but demonstrate protection of workers, the public, and the environment through similar analysis and risk assessments required under Comprehensive Environmental Response, Compensation, and Liability Act. Performance assessments are a systematic analysis of the potential radiological doses posed by waste management systems to the public and the environment, and a comparison of those radiological doses with established performance objectives and dose limits. Information from performance assessments is important to establishing the disposal facility operating parameters (waste acceptance criteria) which ensure operation within established performance objectives. However, many of the DOE sites that have disposal facilities also have additional radiological sources that may potentially impact the public. In Recommendation 94-2, the Defense Nuclear Facilities Safety Board noted that "Low-level waste radiological performance assessments do not account for other source terms that potentially add to the dose projected for the low-level waste disposal facilities." In response, DOE committed to perform site-specific Composite Analyses at these disposal facility sites to assess the potential public dose due to on-site radiological sources that interact with the low-level waste disposal facility. The Composite Analyses consider all significant radiological sources in the assessment of potential doses to the public, including pre-1988 low-level waste disposed, the post-1988 low-level waste, and other sources of radiological contamination at a site. The Implementation Plan developed in response to Defense Nuclear Facilities Safety Board Recommendation 94-2 standardized the Composite Analysis process through the development of approval criteria and an implementation schedule. In accordance with this schedule, Composite Analyses are expected to be drafted for all disposal facilities, by the end of 1999. This schedule does not support an evaluation of Composite Analysis results in this Report, however the Department's low-level and mixed low-level waste disposal capacity as determined in this Report may be impacted by Composite Analysis results. The significance of this impact will need to be assessed when the Composite Analyses are completed and future revision of this Report (Revision 2) is prepared.

1.4 Waste Management Programmatic Environmental Impact Statement

The Department has recently analyzed options regarding low-level waste and mixed low-level waste treatment and disposal in an environmental impact study prepared in accordance with the National Environmental Policy Act. The *Department of Energy Final Waste Management Programmatic Environmental Impact Statement* was issued on May 30, 1997. The *Waste Management Programmatic Environmental Impact Statement* preferred alternatives for low-level and mixed low-level waste disposal are the same: to select two to three regional disposal sites from the following six candidate DOE sites -- Hanford, Idaho National Engineering and Environmental Laboratory, Los Alamos National Laboratory, Nevada Test Site, Oak Ridge Reservation, and Savannah River Site. The Department may also continue to use commercial disposal facilities, consistent with the DOE Radioactive Waste Management Order and current DOE policy.

States, Tribal Nations, regulators, and stakeholders have requested a period of dialogue on possible disposal configurations before the Department issues its final decisions for its low-level and mixed low-level waste disposal configuration. To initiate this dialogue, the Department released a suite of options for the states' consideration at a meeting with the National Governors' Association and at two inter-site workshops involving states, stakeholders, and Tribal Nations. Discussions are expected to continue with the National Governors' Association and others, including citizens advisory boards, Environmental Management's State and Tribal Government

Working Group, the Transportation External Coordination Working Group, and the National Association of Attorneys General. The conclusions and findings of this Report may also be considered in the evaluation of options. In the *Waste Management Programmatic Environmental Impact Statement*, the Department committed that, following consultations, it will notify the public as to which specific sites it prefers for disposal of low-level and mixed low-level waste by publishing a notice in the *Federal Register*. The Department will not issue the Records of Decision for low-level or mixed low-level waste disposal until at least 30 days after the publication of its preferred disposal sites in the *Federal Register*.

1.5 Data Sources for Projected Volume and Radiological Profile

The data for projected waste volumes were obtained from the March 1998 Draft *Accelerating Cleanup: Paths to Closure* database. Radionuclide data were obtained principally from a Waste Management Technical Data Request in April 1997; the Mixed Waste Inventory Report, 1995; the Environmental Restoration Core Database; the Comprehensive Environmental Response, Compensation, and Liability Act feasibility study for remediation of the silos at Fernald Environmental Management Project; and from discussions and correspondence with personnel at low-level and mixed low-level waste disposal facilities. Disposal facility-specific design and planning documents also served as sources of information. Table 1-2 summarizes the data sources for the Report by organization and by data type. Appendix D provides a summary of how radioactivity profiles were determined based on the available data. Also, resultant data were reviewed for consistency against the body of Department low-level waste-related reports, including the Integrated Data Base Report and the *Waste Management Programmatic Environmental Impact Statement*.

It should be noted that some waste volumes presented in this Report differ from volumes being used in other DOE analyses, such as DOE's *Policy Analysis on Use of Commercial Disposal Facilities*. However, in most cases, the affected waste volumes presented in this Report are larger than those currently being analyzed in more recent analyses and the result from reductions in the *to be determined* wastes due to better categorization of final disposition plans.

Data Source	Waste Generation Data	Radiological Profile Data	Disposal Capacity Data
Waste Management	- Draft <i>Accelerating</i> <i>Cleanup: Paths to Closure</i> , frozen as of March, 1998	 Waste Management Technical Data Request, April 1997 Mixed Waste Inventory Report, 1995 	 Performance Evaluation of the Technical Capabilities of DOE Sites for disposal of mixed low- level waste Radiological Performance Assessments (in varying states of development) Discussions, correspondence with site personnel
Environmental Restoration	- Draft Accelerating Cleanup: Paths to Closure, frozen as of March, 1998	 Environmental Restoration Core Database Waste Management Technical Data Request, April 1997 Comprehensive Environmental Response, Compensation, and Liability Act feasibility study for remediation of the silos at Fernald Environmental Management Project 	 Conceptual Design Reports Record of Decision Documents Discussions, correspondence with site personnel

 Table 1-2.
 Data Sources

1.6 Assumptions

The assumptions for the projected volumes and radiological profiles used in these analyses are a function of the various databases used for this Report, and bound the scope of the analyses. These assumptions are discussed below:

The base case analyses in this Report are developed from the current accepted disposal configuration described in Section 1.2 and Table 1-1. However, the disposition of a number of existing and anticipated waste streams is not finalized. DOE plans to issue a Record of Decision for low-level and mixed low-level waste disposal in late 1998. This Record of Decision is expected to finalize disposition of the anticipated waste streams. In order to assess the potential impact of these unassigned waste streams, alternative scenarios were developed in this Report. A radiological source term was developed for the alternative scenarios by compiling the volumetric and radiological profile information associated with DOE low-level and mixed low-level waste streams that are currently unassigned. The potential impact of this waste on various disposal sites is then analyzed. This process is detailed in Chapters 2.0 and 3.0 and the results are summarized in Chapter 4.0 of this Report. Any decision about the actual disposal of this waste will be made with a record of decision under the *Waste Management Programmatic Environmental Impact Statement*.

- The current and planned Department low-level waste disposal facilities are those listed in Appendix A. The Report only considers those disposal facilities that are currently accepting low-level waste or are currently expected to accept low-level waste before 2070. The radiological capacity used by pre-1988 disposed low-level waste, or by closed disposal facilities, is not included in the assessment of available radiological capacity. The impact on capacity from such low-level waste, as well as other sources of radiological impacts is currently being assessed through the Composite Analysis process and will be addressed in a future revision of this Report.
- The radiological performance objectives stated in DOE Order 5820.2A are used in assessing disposal capacity, and they are not expected to change.
- The ground-water pathway, atmospheric pathway and intruder scenarios as described in the *Performance Evaluation of the Technical Capabilities of DOE Sites for Disposal of Mixed Low-Level Waste* (published in March 1996, and referred to as the *Performance Evaluation* in this Report), are the potential pathways through which radionuclides from low-level and mixed low-level waste disposal facilities could impact the public.
- The radionuclides identified in Appendix C are sufficient to evaluate the potential radiological impact to the public. Other radionuclides present in DOE low-level and mixed low-level waste (e.g., short-lived radionuclides) would not contribute significantly to potential radiological impact.
- Radionuclide transport mechanisms, intake fractions, and dose conversion factors assumed in the *Performance Evaluation* conservatively estimate the potential radiological impact.
- Radiological performance analyses were calculated for a 1,000-year period, consistent with DOE guidance for time of compliance in DOE low-level waste disposal facility radiological performance assessments.
- The current scope (as defined by the site submittal made to the draft *1998 Accelerating Clean-up: Paths to Closure*) of the Department's cleanup program will not significantly change.
- Federal environmental regulations (e.g., Comprehensive Environmental Response, Compensation, and Liability Act) will not change in a manner that significantly increase or decrease cleanup volumes (e.g., a de minimis standard is established that would significantly affect waste generation projections).
- Land use designations assumed by site personnel projecting low-level and mixed low-level waste volumes and schedules will not change significantly.
- Current technologies are employed in cleanup activities.
- Byproduct material as defined by Section 11e(2) of the Atomic Energy Act, as amended, is not considered in this Report.

- The current configuration of low-level and mixed low-level waste management for the *base case*--treatment, storage, and disposal--will continue until program completion.
- The current mission for generators will remain relatively unchanged until program completion.
- No pre-1988 buried low-level waste will be retrieved nor will low-level waste in closed disposal facilities be retrieved.
- Neither the United States Enrichment Corporation nor any other Nuclear Regulatory Commission licensed uranium enrichment facility will request that the Department dispose of their low-level waste pursuant to Public Law 104-134, Title III, Chapter 1, Subchapter A, Section 3113.
- The Nuclear Material and Facility Stabilization program will not construct low-level or mixed low-level waste disposal facilities.
- Low-level and mixed low-level waste volumes generated in the deactivation of surplus contaminated facilities will be transferred to the Waste Management program for treatment and eventual disposal.
- The Environmental Restoration program will decommission facilities in association with other clean-up activities under the authorities of the Comprehensive Environmental Response, Compensation, and Liability Act.
- Facilities currently in the inventory of the Nuclear Material and Facility Stabilization program, as well as facilities forecasted to be surplus before FY 1999 in the Surplus Facility Inventory Assessment, comprise all facilities that will require stabilization and deactivation.

2.0 VOLUMETRIC PROJECTIONS AND CAPACITY

DOE estimates that a total of approximately 8.1 million m³ of low-level waste will require disposal by DOE from 1998 through 2070. This includes approximately 1.5 million m³ of low-level waste to be disposed in Waste Management Program disposal facilities; approximately 5.8 million m³ of low-level waste to be disposed by the Environmental Restoration Program in either existing Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) disposal facilities (5.4 million m³), not-yet-constructed CERCLA disposal facilities (390,000 m³), or remediation units (15,000 m³); nearly 510,000 m³ of low-level waste to be disposed in commercial disposal facilities; and almost 330,000 m³ of low-level waste that does not yet have an identified disposal facility (i.e., the disposal facility is classified as *to be determined*).

In addition to the 8.1 million m³ of low-level waste identified above, DOE estimates that a total of 710,000 m³ of mixed low-level waste volume will require disposal by DOE from 1998 through 2070. This includes almost 100,000 m³ to be disposed at Waste Management Program mixed low-level waste disposal facilities; approximately 370,000 m³ of mixed low-level waste to be disposed by the Environmental Restoration Program in either existing CERCLA disposal facilities (400 m³), not-yet-constructed CERCLA disposal facilities (35,000 m³), and remediation units (330,000 m³); approximately 78,000 m³ of mixed low-level waste to be disposed at commercial mixed low-level waste disposal facilities; and over 170,000 m³ of mixed low-level waste that does not yet have an identified disposal facility.

Chapter 2.0 compares the Department's currently available and projected low-level and mixed low-level waste volumetric disposal capacity with the volume of waste projected to require disposal. Section 2.1 identifies the sources of the data and methodology used in the comparison. Section 2.2 presents a brief overview of the generator waste volume projections. Sections 2.3 and 2.4 present, respectively, the low-level waste and mixed low-level waste volumes projected to be disposed at each DOE facility and at commercial facilities. Section 2.5 compares the volume of low-level waste and mixed low-level waste projected to be disposed at each facility with the available volumetric capacity of the facility. Alternative scenarios for disposing of waste which has a disposal site designation of *to be determined* for low-level waste is presented in Section 2.6. A similar alternative scenario analysis for mixed low-level waste is presented in Section 2.7. Section 2.8 provides a summary comparison of the low-level and mixed low-level waste volume projections and disposal capacities.

This is the first revision of the Report since Revision 0 was issued on July 30, 1996. The Department's low-level waste disposal projections and facility capacities are generally consistent between Revision 0 and this Report. The following two changes are the most significant differences between the volumetric disposal projections in the two reports:

• Projections of low-level waste to be disposed at commercial facilities decreased from 1.6 million m³ to 510,000 m³, due primarily to 840,000 m³ of Oak Ridge Reservation low-level waste that is no longer projected for commercial disposal.

• The Savannah River Site capacity and projected configuration has been changed, though overall Savannah River Site capacity (about 1 million m³) is not affected. The number of vaults that had been considered previously has been reduced, and the associated space is now being considered for slit trench emplacement. This represents a flexible configuration capability that is adjusted as future needs become better defined. The majority of projected waste volumes originally considered for disposal in low-activity waste vaults is projected to be disposed in slit trenches.

Additionally, Revision 0 discussed the projected volume of mixed low-level waste but did not evaluate whether DOE's available capacity was sufficient. The Revision 1 Report does evaluate DOE's mixed low-level waste disposal capacity and projected generation.

2.1 Volumetric Capacity Analysis Methodology

To assess the adequacy of the Department's low-level waste and mixed low-level waste volumetric disposal capacity, the volume of waste disposed to date and projected for disposal at each facility was compared to the facility's total volumetric capacity. The comparison involved the following three types of data:

- Past Waste Disposal Volume Data on waste volumes disposed prior to 1998 were provided by each disposal facility.
- Projected Future Waste Disposal Volume Waste volume projections are based on data DOE compiled in early 1998 in support of the Accelerating Cleanup: *Paths to Closure* strategy issued in June 1998. These data identify each low-level and mixed low-level waste stream projected to be generated or currently in inventory, the inventory volume, the projected generation and disposal volumes between 1998 and 2070, the waste type (either low-level or mixed low-level), and the disposal facility that the generator expects will be used. In cases where the generator site has not identified a disposal facility, the disposition of the waste is identified as *to be determined*.
- Facility Disposal Capacity The established volumetric disposal capacity of each facility was calculated from data on the dimensions of the facility. Appendix A presents the calculations used to determine each facility's total volumetric disposal capacity.

2.2 Projected Volumetric Disposal Needs

This section summarizes the total volumes of the Department's low-level and mixed low-level waste projected to require disposal from 1998 through 2070. Low-level and mixed low-level waste requiring disposal is generated by a number of Department programs. For the purpose of this Report, a distinction is made between low-level and mixed low-level waste generated by the Environmental Restoration Program and all other programs. The primary reason for this distinction is that while the Environmental Restoration Program generates the largest volume of low-level and mixed low-level waste as part of cleanup activities, the Environmental Restoration

Program also manages disposal of the majority of these wastes, with only a fraction being transferred to the Waste Management Program or commercial facilities for disposal.

2.2.1 Projections from Programs Other Than Environmental Restoration

Programs Waste provided to the Waste Management Program includes waste that was initially generated or is derived from waste initially generated by other DOE programs and transferred to the Waste Management Program for management and disposal. DOE programs that will provide waste for disposal in Waste Management Program disposal facilities include the Waste Management, Nuclear Materials and Facility Stabilization, Defense, Energy Research, and Nuclear Energy (including the Naval Reactors program).

The generators from other programs typically generate waste from active operations and are listed in Table 1-1. Table 2-1, column 2, (Non-ER) presents the low-level waste volume projections by generator from Programs other than Environmental Restoration and identifies the planned disposal option. These waste volumes represent the projected low-level waste disposal needs from 1998 through 2070. Table 2-2, column 2 (Non-ER) presents similar data for mixed lowlevel waste.

Table 2-1. Projected Low-Level Waste Disposal Volumes by Generator Site/Program(1998 - 2070) a

Generator Site	Non-ER	ER	Total ^b	Disposal Site/Facility
Hanford Site	0	3,800,000	3,800,000	Hanford/Environmental Restoration Disposal Facility (3,800,000 m ³)
Fernald Environmental Management Project	0	1,600,000	1,600,000	Fernald/On-Site Disposal Facility (1,600,000 m ³)
Ames Laboratory	120	0	120	
Argonne National Laboratory - East	13,000	780	14,000	
Brookhaven National Laboratory	17,000	9,000	26,000	
Columbus Environmental Management Project - WJ	0	1,400	1,400	Hanford/200 Area Burial Grounds
Energy Technology Engineering Center	0	640	640	(280,000 m ³)
General Atomics	0	340	340	
Hanford Site	230,000	0	230,000	
Lawrence Berkeley National Laboratory	430	0	430	
Laboratory for Energy-Related Health Research	0	2,000	2,000	
Portsmouth Gaseous Diffusion Plant	2,000	0	2,000	
Princeton Plasma Physics Laboratory	2,000	0	2,000	
Argonne National Laboratory - West	0	140	140	Idaho/Radioactive Waste Management Complex
Idaho National Engineering and Environmental Lab	24,000	0	24,000	$(24,000 \text{ m}^3)$
Los Alamos National Laboratory	520,000	37,000	560,000	Los Alamos/Technical Area 54 (560,000 m ³)
Energy Technology Engineering Center	0	2,800	2,800	
Fernald Environmental Management Project	0	84,000	84,000	
Lawrence Livermore National Laboratory	37,000	0	37,000	
Lovelace Respiratory Research Institute	2,300	0	2,300	Nevada/Area 3 and 5 Radioactive
Miamisburg Environmental Management Project	0	64,000	64,000	Waste Management Sites
Nevada Test Site	360	220,000	220,000	(480,000 m ³)
Pantex Plant	1,400	0	1,400	
Rocky Flats Environmental Technology Site	20,000	45,000	65,000	
Sandia National Laboratory - NM	3,700	1,400	5,100	
Savannah River Site	86,000	46,000	130,000	Savannah/Slit Trenches (130,000 m ³)
Savannah River Site	2,900	0	2,900	Savannah/Intermediate Level Vaults (2,900 m ³)
Savannah River Site	17,000	0	17,000	Savannah/Low Activity Vaults (17,000 m3)
Idaho National Engineering and Environmental Lab	0	330,000	330,000	Idaho/Future CERCLA Disposal Facility (330,000 m ³)
Oak Ridge Reservation	0	60,000	60,000	Oak Ridge/Future CERCLA Disposal Facility (60,000 m ³)
Argonne National Laboratory - West	1,000	0	1,000	
Brookhaven National Laboratory	0	9,400	9,400	
Columbus Environmental Management Project - WJ	0	7,800	7,800	
General Electric Vallecitos Nuclear Center	0	20	20	Disposal Site "to be determined"
Grand Junction Project Office	0	55	55	$(330,000 \text{ m}^3)$
Idaho National Engineering and Environmental Lab	24,000	0	24,000	
Oak Ridge Reservation	240,000	20,000	260,000	
Paducah Gaseous Diffusion Plant	4,400	0	4,400	
Separations Process Research Unit	0	8,200	8,200	
West Valley Demonstration Project	11,000	0	11,000	
Idaho National Engineering and Environmental Lab	0	15,000	15,000	Idaho/Return to Remediation Unit (15,000 m ³)

Generator Site	Non-ER	ER	Total ^b	Disposal Site/Facility
Argonne National Laboratory - East	1,500	0	1,500	
Ashtabula Environmental Management Project	0	15,000	15,000	
Brookhaven National Laboratory	0	100,000	100,000	
Columbus Environmental Management Project - WJ	0	1,300	1,300	
Energy Technology Engineering Center	0	15,000	15,000	
Fernald Environmental Management Project	0	360,000	360,000	(510,000 m ³)
Lawrence Berkeley National Laboratory	670	5	680	
Lawrence Livermore National Laboratory	7,800	0	7,800	
Los Alamos National Laboratory	0	560	560	
Pantex Plant	0	610	610	
Paducah Gaseous Diffusion Plant	0	6,100	6,100	
Savannah River Site	990	0	990	
Totals ^b	1,300,000	6,900,000	8,100,000	

^a Volume in cubic meters. Volume projections and disposal facility designations are based on *Paths to Closure* strategy data.. Some projections do not represent final decisions and will require further assessment under the National Environmental Policy Act. These data and the subsequent volumetric analysis do not include low-activity waste resulting from treatment of high-level waste. ^b Because of rounding, some totals may not equal the sum of their components.

Table 2-2. Projected Mixed Low-Level Waste Disposal Volumes by Generator Site/Program (1998 - 2070) ^a

Generator Site	Non-ER	ER	Total	Disposal Site/Facility
Hanford Site	0	400	400	Hanford/Environmental Restoration Disposal Facility (400 m ³)
Hanford Site	99,000	0	99,000	Hanford/Radioactive Mixed Waste Land Disposal Facility (99,000 m ³)
Nevada Test Site	0.1	0	0.1	Nevada/Mixed Waste Disposal Unit (0.1 m ³)
Idaho National Engineering and Environmental Lab	0	5,900	5,900	Idaho/Planned CERCLA Disposal Facility (5,900 m ³)
Oak Ridge Reservation	0	29,000	29,000	Oak Ridge/Planned CERCLA Disposal Facility (29,000 m ³)
Argonne National Laboratory - East	0	660	660	
Energy Technology Engineering Center	0	1,400	1,400	
Hanford Site	100	0	100	
Idaho National Engineering and Environmental Lab	0	760	760	
Los Alamos National Engineering Laboratory	0	3,400	3,400	
Oak Ridge Reservation	83,000	0	83,000	Disposal Site "to be determined" (170,000 m ³)
Paducah Gaseous Diffusion Plant	2,700	8	2,700	(1/0,000 III)
Portsmouth Gaseous Diffusion Plant	2,800	160	3,000	
Rocky Flats Environmental Technology Site	7,400	61,000	68,000	
Sandia National Laboratory - NM	160	0	160	
Savannah River Site	6,100	0	6,100	
West Valley Demonstration Project	26	0	26	
Idaho National Engineering and Environmental Lab	0	330,000	330,000	Idaho/Return to Remediation Unit (330,000 m ³)
Ames Laboratory	1	0	1	
Argonne National Laboratory - East	89	0	89	
Brookhaven National Laboratory	80	2,100	2,100	
Columbus Environmental Management Project - WJ	0	28	28	
Energy Technology Engineering Center	0	38	38	
Fernald Environmental Management Project	0	4,500	4,500	
General Atomics	1	0	1	
Hanford Site	0	600	600	
Idaho National Engineering and Environmental Lab	3,500	0	3,500	Commercial Site
Lawrence Berkeley National Laboratory	200	10	210	$(78,000 \text{ m}^3)$
Lawrence Livermore National Laboratory	1,500	0	1,500	
Los Alamos National Engineering Laboratory	2,100	0	2,100	
Lovelace Respiratory Research Institute	73	0	73	
Oak Ridge Reservation	2,500	44,000	46,000	
Pantex Plant	390	5	400	
Paducah Gaseous Diffusion Plant	87	180	270	
Portsmouth Gaseous Diffusion Plant	3,100	870	3,900	
Rocky Flats Environmental Technology Site	11,000	0	11,000	
Salmon Site	0	790	790	
Sandia National Laboratory - NM	660	190	850	
Totals	230,000	480,000	710,000	

^a Volume in cubic meters. Volume projections and disposal facility designations are based on *Paths to Closure* strategy data.. Some projections do not represent final decisions and will require further assessment under the National Environmental Policy Act. These data and the subsequent volumetric analysis do not include low-activity waste resulting from treatment of high-level waste. ^b Because of rounding, some totals may not equal the sum of their components.

2.2.2 Environmental Restoration Generation Projections

The DOE Environmental Restoration Program generates low-level and mixed low-level waste from assessment, remediation, and facility decommissioning activities. For this analysis, DOE estimated the volume of environmental restoration low-level and mixed low-level waste requiring disposal at DOE facilities using a three-step process:

- 1. *Contaminated Media Volume* Based on assessments of the type and extent of contamination at each site, DOE sites estimated the total volume of solid low-level and mixed low-level waste media and facilities present at each site.¹
- 2. *Low-Level and Mixed Low-Level Waste Generation Volume* Based on the estimated volume of media and facilities from Step (1) and the expected cleanup response at each site, DOE sites estimated the volume of low-level and mixed low-level waste generated from ex-situ cleanup responses.
- 3. *Low-Level and Mixed Low-Level Waste Disposal Volume* Based on the estimated volume of low-level and mixed low-level waste generated from Step (2) and the expected subsequent disposition pathway of the waste (e.g., treatment, volume reduction, DOE disposal, commercial disposal), the DOE sites estimated the volume of low-level and mixed low-level waste requiring disposal at DOE facilities.

Across the complex, the Environmental Restoration Program estimated a total of 32 million m³ of solid low-level waste media and facilities and 1.2 million m³ of solid mixed low-level waste and facilities. These estimates are "in-place" volumes and reflect the Environmental Restoration Program's current understanding of contaminated media and facilities. These in-place volumes may increase or decrease in the future as site characterization activities continue. At each site, the volume of low-level or mixed low-level waste, if any, that will be generated and eventually disposed will depend on the specific response strategies and methodologies used. These response strategies and methodologies will be developed by the Department through discussions with Federal and State regulators. Figure 2-1 outlines the general response strategies that the Environmental Restoration Program utilizes. The strategies range from "no further action" to removal of all contaminated media for disposal in an engineered facility. Tables 2-3 and 2-4 present the volume of waste expected to be generated by the Environmental Restoration Program at each site, indicate how the waste will be managed, and present estimates of the volume of media projected to be managed in place. As presented in these tables, the volume of low-level and mixed low-level waste considered in the capacity analysis is a subset of the volumes that are either to be transferred to the Waste Management Program, treated and disposed by the Environmental Restoration Program, or are classified as to be determined.

¹The Environmental Restoration Program classifies in-situ environmental media and facilities according to waste type for purposes of response planning and coordination. These media and facilities do not become waste unless or until they are removed. The volumes of media and waste used in this analysis include only solid materials and exclude groundwater and surface water.

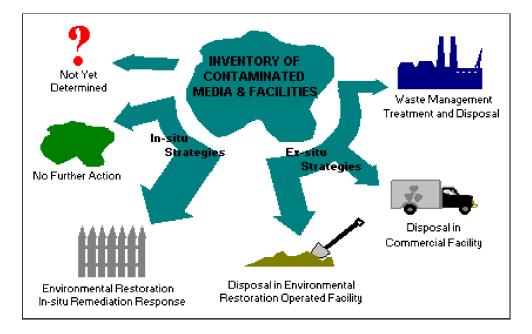


Figure 2-1. Anticipated Environmental Restoration Remediation Strategies Addressing Contaminated Media/Facilities

Of the 32 million m³ of solid low-level waste media and facilities shown in Table 2-3, 6.9 million m³ of low-level waste is projected to be generated through ex-situ response strategies. Table 2-1, column 3 (ER), presents the 6.9 million m³ of projected low-level waste by generator from the Environmental Restoration Program and identifies the planned disposal option. The ex-situ response strategies include transferring the waste to the Waste Management Program (540,000 m³), treating and disposing of the waste in facilities managed by the Environmental Restoration Program (5.8 million m³), and transferring the waste to commercial disposal facilities (500,000 m³). Relatively smaller volumes of low-level waste are projected to be recycled (41,000 m³) or do not yet have a disposal option determined (27,000 m³). In-situ responses are expected to be used to manage the remaining 25 million m³ of solid low-level waste media and facilities. Of the 540,000 m³ projected to be transferred to Waste Management Program, 510,000 m³ is expected to be disposed in Waste Management Program facilities without further processing, and the remainder either does not have an identified disposal alternative (the waste is classified as *to be determined*) or the waste is treated prior to disposal.

Of the 1.2 million m³ of solid mixed low-level waste media and facilities shown in Table 2-4, 490,000 m³ of mixed low-level waste is projected to be generated through ex-situ response strategies. Table 2-2, column 3 (ER) presents the 490,000 m³ of projected mixed low-level waste by generator from the Environmental Restoration Program and identifies the planned disposal option. The ex-situ response strategies include transferring the waste to the Waste Management Program (73,000 m³), treating and disposing of the waste in facilities managed by the Environmental Restoration Program (360,000 m³), and transferring the waste to commercial disposal facilities (54,000 m³). An additional volume (1,400 m³) does not have an identified disposal option yet determined. In-situ responses are expected to be used to manage the

remaining 660,000 m³ of solid media classified as mixed low-level waste. Nearly all of the 73,000 m³ projected to be transferred to Waste Management Program is subsequently classified as *to be determined* because specified disposal sites for this waste have not been identified.

	Volume of S	Solid Low-Le	ironmental					
Site	Transfer to Waste Mgmt Program	Treat. and Disp. by Env. Rest. Program	Transfer to Comm. Facilities	Recycle	Ex-situ Response To Be Determ.	Total Ex-Situ Low-Level Waste Generated	Volume of Media and Facilities Managed In-Situ	Total Low-Level Waste, Media, and Facilities
Hanford Site		3,800,000				3,800,000	20,000,000	24,000,000
Nevada Test Site	220,000					220,000	2,500,000	2,700,000
Fernald Env. Mgmt. Proj.	84,000	1,600,000	360,000	3,900		2,100,000	0	2,100,000
Idaho Nat. Eng. & Env. Lab.	14,000	340,000				360,000	1,000,000	1,400,000
Savannah River Site	46,000			2,100		48,000	1,300,000	1,400,000
Los Alamos Nat. Lab.	38,000		560			38,000	200,000	240,000
Brookhaven Nat. Lab.	9,000		100,000	35,000	10,000	160,000	0	160,000
Oak Ridge Reservation	20,000	60,000	290			80,000	0	80,000
Mound Env. Mgmt. Proj.	64,000		0			64,000	0	64,000
Rocky Flats Env. Tech. Site	45,000					45,000	0	45,000
Energy Tech. Eng. Center	3,400		15,000			18,000	0	18,000
Ashtabula Env. Mgmt. Proj.			15,000			15,000	0	15,000
Argonne Nat. Lab West	140				370	510	14,000	14,000
Columbus Env. Mgmt. Proj.	1,400		1,300		7,900	10,000	0	10,000
Argonne Nat. Lab East	780				0	780	7,600	8,400
Separations Processing Res. Unit					8,200	8,200	0	8,200
Paducah Gas. Diff. Plant	1		6,100			6,100	0	6,100
Lab. For Energy-Rel. Health Res.	2,100					2,100	0	2,100
Sandia Nat. Lab.	1,400					1,400	0	1,400
Pantex Plant			610			610	0	610
General Atomics	340		0			340	0	340
Grand Junction Proj. Office					55	55	0	55
General Elec. Vallecitos Nuc. Center					20	20	0	20
Lawrence Berkeley Nat. Lab.			5			5	0	5
Total: NOTES	540,000	5,800,000	500,000	41,000	27,000	6,900,000	25,000,000	32,000,000

Table 2-3. Disposition of Environmental Restoration ProgramSolid Low-Level Waste Media and Facilities (in cubic meters)

NOTES

1. Volumes have been rounded to two significant figures. Because of rounding, some totals may not equal the sum of their components.

Volumes transferred to the Waste Management Program or treated and disposed by the Environmental Restoration Program include waste to be disposed directly as well as waste to be treated prior to disposal. Some waste transferred to the Waste Management Program is subsequently classified as *to be determined*. Therefore, the response-specific waste volumes shown here may be either larger, smaller, or equal to those in Table 2-1.
 Data provided from March 1998 *Paths to Closure* waste and media volume database.

Table 2-4. Disposition of Environmental Restoration Program Solid Mixed Low-Level Waste Media and Facilities (in cubic meters)

	Volume	of Solid Mixed Enviro	Env. Rest.				
Site	Transfer to Waste Mgmt Program	Treat. and Disp. by Env. Rest. Program	Transfer to Comm. Facilities	Ex-situ Response To Be Determ.	Total Ex-Situ Mixed Low-Level Waste Generated	Env. Rest. Volume of Media and Facilities Managed In-Situ	Total Mixed Low-Level Waste, Media, and Facilities
Idaho Nat. Eng. & Env. Lab.	60	330,000		700	330,000	430,000	770,000
Argonne Nat. Lab East				660	660	140,000	140,000
Oak Ridge Reservation	200	29,000	44,000		73,000	0	73,000
Rocky Flats Env. Tech. Site	61,000				61,000	0	61,000
Los Alamos Nat. Lab.	3,400				3,400	21,000	25,000
Lawrence Livermore Nat. Lab.					0	22,000	22,000
Savannah River Site	68				68	21,000	21,000
Nevada Test Site					0	13,000	13,000
Fernald Env. Mgmt. Proj.	3,600		4,500		8,100	0	8,100
Ashtabula Env. Mgmt. Proj.			180		180	4,000	4,100
Paducah Gas. Diff. Plant	3,200		180		3,400	0	3,400
Sandia Nat. Lab.			190		190	2,800	3,000
Brookhaven Nat. Lab.			2,100		2,100	0	2,100
Portsmouth Gas. Diff. Plant	160		1,500		1,700	0	1,700
Energy Tech. Eng. Center	1,400		38	0	1,400	0	1,400
Hanford Site	58	400	600		1,100	0	1,100
Argonne Nat. Lab West					0	880	880
Salmon Site			790		790	0	790
Pantex Plant			5		5	220	230
Separations Processing Res. Unit				70	70	0	70
Columbus Env. Mgmt. Proj.	38		28		67	0	67
Lawrence Berkeley Nat. Lab.			10		10	0	10
General Atomics	1				1	0	1
Grand Junction Proj. Office				0.15	0.15	0	0
Total:	73,000	360,000	54,000	1,400	490,000	660,000	1,200,000

NOTES

1. Volumes have been rounded to two significant figures. Because of rounding, some totals may not equal the sum of their components.

2. Volumes transferred to the Waste Management Program or treated and disposed by the Environmental Restoration Program include waste to be disposed directly as well as waste to be treated prior to disposal. Some waste transferred to the Waste Management Program is subsequently classified

as to be determined. Therefore, the response-specific waste volumes shown here may be either larger, smaller, or equal to those in Table 2-2.

3. Data provided from March 1998 Paths to Closure waste and media volume database.

2.3 Low-Level Waste Disposal Volumes

This section presents a summary of the projected volume of the Department's low-level waste by disposal site. The total low-level waste volume projected to require disposal in DOE facilities from 1998 through 2070 is approximately 8.1 million m³. The Department estimates that approximately 1.5 million m³ of low-level waste will be disposed in Waste Management Program disposal facilities. Approximately 5.8 million m³ of low-level waste to be disposed by the Environmental Restoration Program in either existing Comprehensive Environmental Response, Compensation, and Recovery Act (CERCLA) disposal facilities (5.4 million m³), not-yet-constructed CERCLA disposal facilities (390,000 m³), or remediation units (15,000 m³). Nearly 510,000 m³ of low-level waste to be disposed in commercial disposal facilities; and almost 330,000 m³ of low-level waste that does not yet have an identified disposal facility (i.e., the disposal facility is classified as *to be determined*).

2.3.1 Low-Level Waste Disposal in Waste Management Program Disposal Facilities

The Department projects that 1.5 million m³ of low-level waste will require disposed at Waste Management Program disposal facilities between 1998 and 2070. A further 330,000 m³ of low-level waste will require disposal at a *to be determined* disposal facility. *To be determined* low-level waste could be disposed at either Waste Management Program or commercial disposal facilities. *To be determined* low-level waste is discussed further in Section 2.6.

Table 2-5 presents a summary of Waste Management Program disposal sites and the low-level waste volumes corresponding to each site. These volumes include past disposal (pre-1988 and 1988 to 1997) and projected future disposal from 1988 through 2070. The future disposal includes waste from both the Environmental Restoration Program as well as non-Environmental Restoration Program waste generators. This data will be used in Section 2.5 in the evaluation of the capacity of the disposal facilities to receive the projected waste.

	Past Disposal		Projected 1998-2070			
Disposal Facility	Pre-1988	1988-1997	Env. Rest.	Waste Mgmt.	Total	
Hanford 200 Area	130,000	110,000	14,000	270,000	520,000	
Idaho National Engineering and Environmental Laboratory	13,000	13,000	140	24,000	50,000	
Los Alamos National Laboratory	150,000	43,000	37,000	520,000	750,000	
Nevada Test Site	0	190,000	420,000	65,000	670,000	
Oak Ridge Reservation	0	3,300	0	0	3,300	
Savannah River Site Low-Activity Waste Vault	0	10,000	0	17,000	27,000	
Savannah River Site Intermediate Level Vault	0	550	0	3,000	3,600	
Savannah River Site Slit Trenches	0	770	46,000	86,000	130,000	
To Be Determined	N/A	N/A	47,000	280,000	330,000	
	290,000	370,000	560,000	1,300,000	2 500 000	
Totals	670,000		1,800,000		2,500,000	

Table 2-5. Past and Projected Low-Level Waste Volumes for Disposal at Currently
Operating Waste Management Program Facilities (in cubic meters)

NOTE: Because of rounding, some totals may not equal the sum of their components. The past disposal values reflect disposal at ONLY the currently operating disposal facilities. It does not consider waste disposed at other facilities which are now closed. The data does not include the 390,000 m³ of Environmental Restoration Program low-level waste to be disposed in not-yet-constructed CERCLA disposal facilities. The 390,000 m³ is included in Table 2-6. These data and the subsequent volumetric analysis do not include low-activity waste resulting from treatment of high-level waste.

2.3.2 Low-Level Waste Disposal in Environmental Restoration Disposal Facilities

The Environmental Restoration Program projects a total of approximately 5.8 million m³ of lowlevel waste from remediation and decommissioning and dismantlement activities will be disposed in Environmental Restoration Program facilities. This includes 5.4 million m³ at existing disposal facilities at Fernald Environmental Management Project (1.6 million m³) and at the Hanford Site Environmental Restoration Disposal Facility (3.8 million m³); 390,000 m³ at not-yet-constructed disposal facilities at Idaho National Engineering and Environmental Laboratory (330,000 m³) and Oak Ridge Reservation (60,000 m³); and 15,000 m³ to be returned to remediation units at Idaho National Engineering and Environmental Laboratory. In this Report, waste projected to be disposed in the not-yet-constructed facilities is grouped with the *to be determined* waste in the alternative scenario analysis. Table 2-6 summarizes the projected Environmental Restoration lowlevel waste disposal volumes by disposal site.

Facility Type	Disposal Facility (or Site)	Projected Volume
Existing CERCLA	Fernald Environmental Management Project	1,600,000
Disposal Facilities	Hanford Environmental Restoration Disposal Facility	3,800,000
CERCLA Remediation Units	Idaho National Engineering and Environmental Laboratory	15,000
Not-yet-constructed CERCLA Disposal	Idaho National Engineering and Environmental Laboratory CERCLA Soil Debris Consolidation Unit	330,000
Facilities	Oak Ridge Reservation	60,000
	TOTAL	5,800,000

Table 2-6. Projected Low-Level Waste Volumes for Disposalat Environmental Restoration Program Disposal Facilities (in cubic meters)

NOTE: Because of rounding, the total does not equal the sum of its components. The 390,000 m³ of Environmental Restoration Program low-level waste to be disposed in not-yet-constructed CERCLA disposal facilities is grouped with the *to be determined* waste in the alternative scenario analysis for low-level waste presented in Section 2.6.

2.3.3 Low-Level Waste Projections for Disposal in Commercial Disposal Facilities

The Department estimates that approximately 510,000 m³ of low-level waste will be disposed in commercial (not DOE-owned) facilities from 1998 to 2070. This includes 500,000 m³ of waste from the Environmental Restoration Program and 11,000 m³ of waste from the Waste Management Program. A portion of the 330,000 m³ of low-level waste that does not have a specified disposal option (*to be determined*) may also be disposed at commercial sites. Evaluation of commercial disposal site capacity is outside the scope of this Report. This analysis assumes that adequate commercial disposal capacity will be available. However, Section 2.6, Alternative Scenarios, considers alternative dispositions for currently projected *to be determined* low-level waste.

2.4 Mixed Low-Level Waste Disposal Volumes

This section presents a summary of the projected volume of Department's mixed low-level waste by disposal site. DOE estimates that a total of 710,000 m³ of mixed low-level waste volume will require disposal by DOE from 1998 through 2070. This includes almost 100,000 m³ to be disposed at Waste Management Program mixed low-level waste disposal facilities; approximately 370,000 m³ of mixed low-level waste to be disposed by the Environmental Restoration Program in either existing CERCLA disposal facilities (400 m³), not-yet-constructed CERCLA disposal facilities (35,000 m³), and remediation units (330,000 m³); approximately 78,000 m³ of mixed low-level waste to be disposed at commercial mixed low-level waste disposal facilities; and over 170,000 m³ of mixed low-level waste that does not yet have an identified disposal facility.

2.4.1 Mixed Low-Level Waste Disposal in Waste Management Program Disposal Facilities

The Department projects that approximately 100,000 m³ of mixed low-level waste will require disposal at Waste Management Program disposal facilities between 1998 and 2070. A further 170,000 m³ of mixed low-level waste will require disposal at a *to be determined* disposal facility. *To be determined* mixed low-level waste could be disposed at either Waste Management Program or commercial disposal facilities. *To be determined* mixed low-level waste is discussed further in Section 2.7.

Table 2-7 presents a summary of Waste Management Program disposal sites and the mixed lowlevel waste volumes corresponding to each site. These volumes include past disposal (pre-1988 and 1988 to 1997) and projected future disposal from 1988 through 2070. At present, Waste Management Program disposal sites accepting mixed low-level waste are located at Hanford Site and Nevada Test Site. Nevada Test Site is only allowed to dispose of mixed low-level waste generated within the State of Nevada. The projected future disposal volumes presented in Table 2-7 include waste from both the Environmental Restoration Program as well as non-Environmental Restoration Program waste generators. Also presented in Table 2-7 is a summary of the volume of mixed low-level waste already disposed at each Waste Management disposal facility. This data will be used in Section 2.6 in the evaluation of the capacity of the disposal facilities to receive the projected waste.

Table 2-7. Past and Projected Mixed Low-Level Waste Volumes for Disposal at Currently			
Operating Waste Management Program Facilities (in cubic meters)			

Disposal Facility	Past Disposal	Projected 1	The A		
(Site)	(pre-1998)	Env. Rest.	Waste Mgmt.	Total	
Hanford	0	0	99,000	99,000	
Nevada Test Site	0	0	1	1	
To be determined	N/A	68,000	102,000	170,000	
Total	0	68,000	202,000	270,000	

NOTE: Because of rounding, some totals may not equal the sum of their components. These data and the subsequent volumetric analysis do not include low-activity waste resulting from treatment of high-level waste.

2.4.2 Mixed Low-Level Waste Disposal in Environmental Restoration Disposal Facilities

The Environmental Restoration Program projects a total of 370,000 m³ of mixed low-level waste will be disposed in Environmental Restoration Program disposal facilities. This includes 330,000 m³ to be returned to remediation units at Idaho National Engineering and Environmental Laboratory; 400 m³ to be disposed at the Hanford Site Environmental Restoration Disposal Facility; and 35,000 m³ to be disposed at not-yet-constructed disposal facilities at Idaho National Engineering and Environmental Laboratory (5,900 m³) and Oak Ridge Reservation (29,000 m³). In this Report, waste projected to be disposed in the not-yet-constructed facilities is grouped with the *to be determined* waste in the alternative scenario analysis. Table 2-8 summarizes the

projected Environmental Restoration Program mixed low-level waste disposal volumes by disposal facility and site.

Facility Type	Disposal Facility (or Site)	Volume
CERCLA Remediation Units	Idaho National Engineering and Environmental Laboratory	330,000
Existing CERCLA Disposal Facilities	Hanford Environmental Restoration Disposal Facility	400
Not-yet-constructed CERCLA Disposal Facilities	Idaho National Engineering and Environmental Laboratory	5,900
	Oak Ridge Reservation	29,000
	Total	390,000

Table 2-8. Projected Mixed Low-Level Waste Volumes for Disposalat Environmental Restoration Program Disposal Facilities (in cubic meters)

NOTE: Because of rounding, the total does not equal the sum of its components. The 35,000 m³ of Environmental Restoration Program mixed low-level waste to be disposed in not-yet-constructed CERCLA disposal facilities is grouped with the *to be determined* waste in the alternative scenario analysis for mixed low-level waste presented in Section 2.7.

2.4.3 Mixed Low-Level Waste Projections for Disposal in Commercial Disposal Facilities

The Department estimates that approximately 78,000 m³ of mixed low-level waste will be disposed in commercial (not DOE-owned) facilities from 1998 to 2070. This includes 53,000 m³ of waste from the Environmental Restoration Program and 25,000 m³ of waste from the Waste Management Program. A portion of the 170,000 m³ of mixed low-level waste that does not have a specified disposal option (*to be determined*) may also be disposed at commercial sites. Evaluation of commercial disposal site capacity is outside the scope of this Report. This analysis assumes that adequate commercial disposal capacity will be available. However, Section 2.7, Alternative Scenarios, considers alternative dispositions for currently projected *to be determined* mixed low-level waste.

2.5 Base Case Comparison of Facility-Specific Volumetric Projections and Disposal Capacity

This section compares the volume of low-level and mixed low-level waste projected to be sent to each disposal facility discussed in Sections 2.3 and 2.4 with the disposal capacity of the facility. For Waste Management Program disposal facilities, the capacity of each facility was evaluated based on that facility's Performance Assessment and other technical documents including site-specific waste acceptance criteria. Table 2-9 summarizes the currently available capacities of the Waste Management Program low-level and mixed low-level waste disposal facilities. In the comparison of waste volumes and facility capacities presented in the following subsections, Waste Management Program mixed low-level waste disposal facilities are discussed separately from the low-level waste disposal facilities because mixed low-level waste cannot be disposed in low-level waste facilities. Similarly, Environmental Restoration Program disposal facilities, including existing and planned facilities that are generally developed to accommodate a variety of wastes from unspecified generators, Environmental Restoration Program facilities are developed to receive waste from only on-site sources resulting from specifically identified environmental restoration activities, and the facilities are designed and sized to accommodate these wastes.

			Capacity		
Program	Site	Disposal Facility	Low-Level Waste	Mixed Low-Level Waste	
		200 Area Burial Grounds	2,000,000		
	Hanford Site	Radioactive Mixed Waste Land Trenches 31 & 34		42,000	
	Idaho National Engineering and Environmental Laboratory	Radioactive Waste Management Complex	97,000		
	Los Alamos National Laboratory	Technical Area-54	225,000		
Waste	Nevada Test Site	Area 3 and 5 Radioactive Waste Management Sites	3,150,000		
Management		Mixed Waste Disposal Unit		120,000	
	Oak Ridge Reservation	Solid Waste Storage Area-6, Interim Waste Management Facility	5,000		
		Low-Activity Waste Vault	110,000		
	Savannah River Site	Intermediate Level Vault	7,300		
		Slit Trenches	290,000		
	Subtotal Waste Mana	gement Program Capacity a,b	5,850,000	160,000	
Environmental Restoration	Fernald Environmental Management Project	On-Site Disposal Facility		1,800,000	
	Hanford Site	Environmental Restoration Disposal Facility [°]		3,900,000	
	Subtotal Environmental Restor	5,700,000			

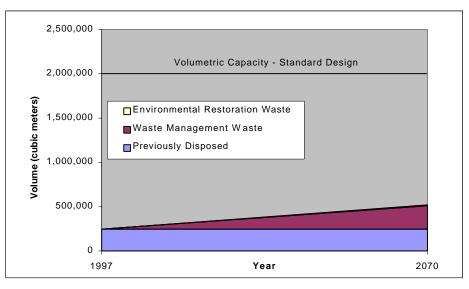
Table 2-9. Volumetric Capacities of Low-Level and Mixed Low-Level Waste Disposal Facilities (in cubic meters)

^a Because of rounding, totals may not equal the sum of their components.

^b Facilities developed to receive low-activity waste resulting from treatment of high-level waste are not included here or in the subsequent analysis.

^c The Hanford Environmental Restoration Disposal Facility can receive both low-level waste as well as mixed low-level waste. Therefore, the Environmental Restoration Program subtotal includes both waste types.

^d Not-yet-constructed CERCLA disposal facilities and remediation units are not listed because capacities have not been established for these facilities.

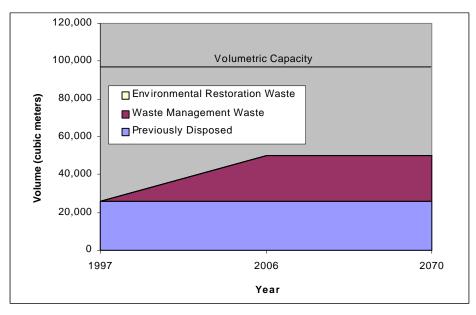

2.5.1 Waste Management Program Low-Level Waste Disposal Facilities

2.5.1.1 Hanford Site 200 Area Low-Level Burial Grounds

The Waste Management Program disposal facilities at Hanford Site accept both on-site and offsite low-level waste for disposal. These facilities are divided geographically into two groups; the 200-East facilities and the 200-West facilities. Only those facilities that were still open in 1995 or that had an available design are considered in the following discussion about disposal capacity and disposal volumes.

Hanford has two different design strategies for their disposal facilities. The current method, designated the standard trench design, uses unlined, sloped (about 45°) trenches that are about 6 m to 7 m deep and vary in length up to approximately 500 m. Trenches are either "V-shaped" (about 3 m wide) or wide-bottomed (about 8 m wide). Based on the standard trench design, the 200 East and 200 West facilities have a combined disposal capacity of over 2 million m³. A proposed alternative disposal method for this facility is a deep trench design, the 200 East and 200 West facilities about 26 meters deep. Based on the deep trench design, the 200 East and 200 West facilities would have a combined disposal capacity of 12.8 million m³.

Figure 2.2 compares the volumetric capacity of the 200-East and 200-West facilities assuming the standard trench design against the volume of waste projected to be disposed at these facilities. A total of 520,000 m³ of low-level waste is projected to be disposed in the 200-East and 200-West facilities through 2070. This includes 130,000 m³ of low-level waste disposed prior to 1988, 110,000 m³ disposed from 1988 to 1997, and an estimated 280,000 m³ projected to be disposed from 1998 through 2070. The waste volume projected for future disposal includes approximately 14,000 m³ from the Environmental Restoration Program and approximately 270,000 m³ from other generators.

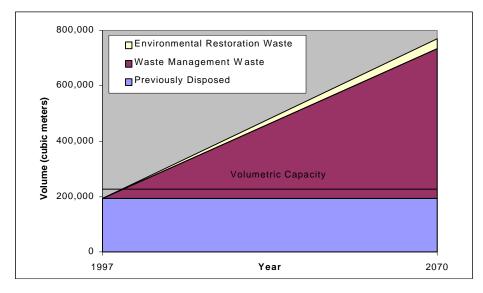

Figure 2-2. Hanford 200 Area Low-Level Waste Disposal Volume Capacity and Projections

2.5.1.2 Idaho National Engineering and Environmental Laboratory Radioactive Waste Management Complex

One low-level waste disposal facility, the Radioactive Waste Management Complex, is presently operating at Idaho National Engineering and Environmental Laboratory. The Radioactive Waste Management Complex disposes of on-site waste only and is currently scheduled to be closed by 2006. The facility includes a number of individual disposal units; however, the capacity analysis presented here only considers those units that remained open as of 1995: Pits 17, 18, 19, and 20, and the Concrete Vaults. The disposal capacity of these units is about 97,000 m³.

The Department estimates that a total of 50,000 m³ of low-level waste will be disposed at the Idaho National Engineering and Environmental Laboratory Radioactive Waste Management Complex. This includes 13,000 m³ disposed prior to 1988, 13,000 m³ disposed from 1988 to 1997, and 24,000 m³ projected to be disposed from 1998 through 2006. Approximately 140 m³ of the projected waste is expected to come from the Environmental Restoration Program. Figure 2-3 illustrates this information.

Figure 2-3. Idaho National Engineering and Environmental Laboratory Low-Level Waste Disposal Volume Capacity and Projections

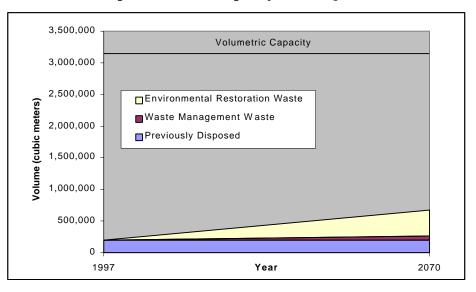


2.5.1.3 Los Alamos National Laboratory Technical Area-54

Los Alamos National Laboratory Technical Area-54 accepts primarily on-site low-level waste for disposal. Off-site waste is accepted only in special cases from Defense Programs sites. The Waste Management Program disposal facility in Technical Area-54 is located at Material Disposal Area G. The units at this facility that were open as of 1995 or had an available design at that time include pits 15, 31, 37, 38, and 39. An additional 24 acres immediately adjacent to Material Disposal Area G is dedicated for expansion of the disposal facility and is considered in this

analysis. Los Alamos National Laboratory is preparing an environmental impact statement that addresses the development of additional disposal capacity in this area. The current disposal is approximately 225,000 m³. However, there is available space for additional capacity, pending the results of the environmental impact statement.

The Department estimates that a total of approximately 750,000 m³ of low-level waste will be disposed at this facility. This includes 150,000 m³ disposed prior to 1988, 43,000 m³ disposed from 1988 to 1997, and an estimated 560,000 m³ projected to be disposed from 1998 to 2070. The waste volume projected for future disposal includes 37,000 m³ from the Environmental Restoration Program and 520,000 m³ from other generators. Figure 2-4 illustrates this information.


Figure 2-4. Los Alamos National Laboratory Low-Level Waste Disposal Volume Capacity and Projections

2.5.1.4 Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites

The Waste Management Program disposal facilities at the Nevada Test Site accept both on-site and off-site low-level waste for disposal. The Waste Management Program operates two disposal facilities at the Nevada Test Site: the Area 3 and Area 5 Radioactive Waste Management Sites. Only the portions of these facilities that were open in 1995 or that had an available design are considered in the comparison of disposal volumes and capacity. Area 3 includes sites U3ahat, U3bh, U3bg, and U3az. These craters represent the current design capacity in Area 3 of 553,000 m³. Area 5 which contains current design capacity includes Pit 3, Pit 5, Pit 6 upper, Pit 6 lower, and Pit 7, with a disposal capacity of 165,000 m³. There is an additional 2.4 million m³ of available low-level waste disposal capacity at Nevada Test Site.

Total available low-level waste disposal capacity at Nevada Test Site is 3,150,000 m³. Additionally, Nevada Test Site has the capability of expanding disposal operations to accommodate disposal larger volumes of low-level waste. Given the site conditions and performance attributes of disposal facilities at the Nevada Test Site, the maximum expandable volumetric capacity is limited only by the size of the usable disposal land at the Nevada Test Site.

The Department estimates that a total of approximately 670,000 m³ of low-level waste will be disposed at the Area 3 and Area 5 facilities. This includes no waste disposed prior to 1988, 190,000 m³ disposed from 1988 to 1997, and an estimated 480,000 m³ projected to be disposed from 1998 to 2070. The waste volume projected for future disposal includes 420,000 m³ from the Environmental Restoration Program and 65,000 m³ from other generators. Figure 2-5 illustrates this information.

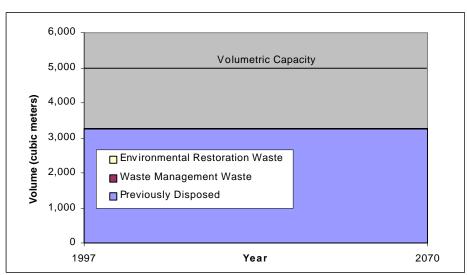


Figure 2-5. Nevada Test Site Low-Level Waste Disposal Volume Capacity and Projections

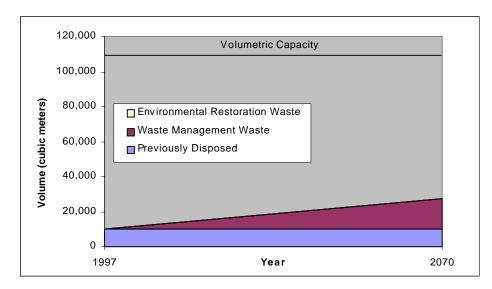
2.5.1.5 Oak Ridge Reservation Solid Waste Storage Area-6, Interim Waste Management Facility

The Waste Management Program disposal facility at Oak Ridge Reservation considered in this report is the Interim Waste Management Facility at Solid Waste Storage Area 6. This facility accepts only on-site low-level waste for disposal. This was the only low-level waste disposal facility operating at the Oak Ridge Reservation as of 1997. The facility has a disposal capacity of approximately 5,000 m³.

The Interim Waste Management Facility at Oak Ridge Reservation received 3,300 m³ of low-level waste between 1988 and 1997. It did not receive waste prior to 1988, and the Department does not project that additional waste will be disposed at the facility. Figure 2-6 illustrates this information.

Figure 2-6. Oak Ridge Reservation Interim Waste Management Facility Low-Level Waste Disposal Volume Capacity and Projections

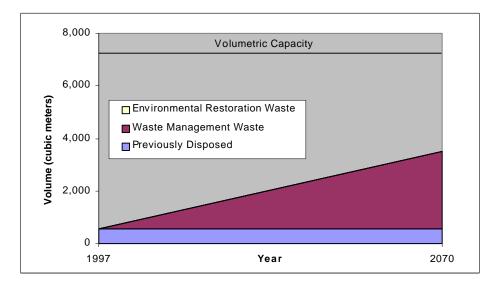
2.5.1.6 Savannah River Site Waste Management Program Low-Level Waste Disposal Facilities


Savannah River Site accepts both on-site and off-site low-level waste for disposal. The Waste Management Program operates three disposal facilities in E-Area at Savannah River Site: the Low-Activity Waste Vaults, the Intermediate-Level (IL) Vault, and the shallow land burial Slit Trenches. Only those facilities that were open in 1995 or that had an available design are considered in the discussion of disposal volumes and capacity. For the purposes of this Report, it is assumed that off-site low-level waste is disposed in the Low-Activity Waste vaults.

2.5.1.6.1 Low Activity Waste Vaults

The total capacity of the Low-Activity Waste Vaults is 110,000 m³. This includes two vaults with a capacity of 32,000 m³ each, and one vault with a capacity of 48,000 m³.

The Department estimates that a total of approximately 27,000 m³ of low-level waste will be disposed at the Low-Activity Waste Vaults. This includes no waste disposed prior to 1988, 10,000 m³ disposed from 1988 to 1997, and an estimated 17,000 m³ projected to be disposed from 1998 to 2070. None of the future projected waste is expected to come from the Environmental Restoration Program. Figure 2-7 illustrates this information.


Figure 2-7. Savannah River Site Low Activity Waste Vaults Low-Level Waste Disposal Volume Capacity and Projections

2.5.1.6.2 Intermediate Level Vault

One Intermediate Level vault for disposal of waste contaminated by more than trace amounts of tritium was considered in this evaluation. The Intermediate Level Vault has a disposal capacity of 7,300 m³.

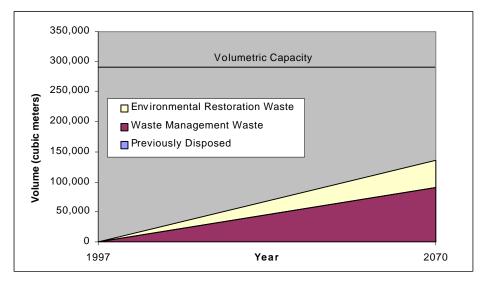

The Department estimates that a total of approximately 3,600 m³ of low-level waste will be disposed at the Intermediate Level Vault. This includes no waste disposed prior to 1988, 550 m³ disposed from 1988 to 1997, and an estimated 3,000 m³ projected to be disposed from 1998 to 2070. None of the future projected waste is expected to come from the Environmental Restoration Program. Figure 2-8 illustrates this information.

Figure 2-8. Savannah River Site Intermediate Level Vault Low-Level Waste Disposal Volume Capacity and Projections

2.5.1.6.3 Slit Trenches

Eleven slit trenches with a combined disposal capacity of 290,000 m³ were considered in this evaluation. The Department estimates that a total of approximately 130,000 m³ of low-level waste will be disposed in the Slit Trenches. This includes no waste disposed prior to 1988, 770 m³ disposed from 1988 to 1997, and an estimated 130,000 m³ projected to be disposed from 1998 to 2070. The waste volume projected for future disposal includes 46,000 m³ from the Environmental Restoration Program and 86,000 m³ from other generators. Figure 2-9 illustrates this information.

Figure 2-9. Savannah River Site Slit Trenches Low-Level Waste Disposal Volume Capacity and Projections

2.5.2 Waste Management Program Mixed Low-Level Waste Disposal Facilities

2.5.2.1 Hanford Radioactive Mixed Waste Land Disposal Facility

The Radioactive Mixed Waste Land Disposal Facility is a Resource Conservation and Recovery Act-compliant facility for disposal of mixed low-level waste. This facility, which is located at the western end of the 218-W-5 Burial Ground in the 200 West Area, consists of two trenches (31 and 34) with an estimated disposal capacity of 42,000 m³.

No mixed low-level waste has been disposed in Mixed Waste Trenches to date. In the future, the Department estimates that a total of 99,000 m³ of mixed low-level waste will be disposed in this facility. None of this waste is expected to come from the Environmental Restoration Program. While the existing capacity of this facility is not large enough for all waste expected to be received, there is a potential readily expandable area available to increase the capacity of the facility by another 100,000 m³. Alternative designs also may be used to increase the existing capacity at this facility. Additionally, Hanford also possesses a completely unused burial ground which conceptually could accept up to 80,000 m³ of mixed low-level waste. Finally, it is also expected that some portion of the waste projected to be disposed at this facility either may not be generated or could be disposed at other DOE or commercial sites with adequate disposal capacity for mixed low-level waste.

2.5.2.2 Nevada Test Site Mixed Waste Disposal Unit

The Nevada Test Site Mixed Waste Disposal Unit, located at the Area 5 Radioactive Waste Management Site, is under Resource Conservation and Recovery Act interim status and is currently only allowed to accept wastes generated in the State of Nevada for disposal. The Mixed Waste Disposal Unit consists of 10 landfill cells with each cell designed to contain approximately 12,000 m³ of mixed low-level waste, for a total capacity of approximately 120,000 m³. No mixed low-level waste has been disposed in the Mixed Waste Disposal Unit to date. At present, the Department estimates that only 0.1 m³ of mixed low-level waste will be disposed in this facility. None of this waste is expected to come from the Environmental Restoration Program.

2.5.3 Environmental Restoration Program Disposal Facilities

The Environmental Restoration Program is currently using two facilities located at the Fernald Environmental Management Project and Hanford Site for disposal of low-level waste. One of these facilities (at Hanford Site) is also expected to receive mixed low-level waste. In addition, two other not-yet-constructed facilities projected to be developed at the Idaho National Engineering and Environmental Laboratory and the Oak Ridge Reservation are expected to be used for low-level waste in the future. Finally, some low-level waste is expected to be returned to remediation units at the Idaho National Engineering and Environmental Laboratory. The capacities of the two existing Environmental Restoration Program disposal facilities are discussed in the following subsections. However, because the capacities of the not-yet-constructed disposal facilities and the remediation units have not yet been established, they have not been included in the comparison of facility capacities and waste disposal volumes.

2.5.3.1 Fernald Environmental Management Project

Low-level waste generated at the Fernald Environmental Management Project is disposed in an onsite facility constructed under a Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision. Fernald began disposing of waste in this facility in 1997. The total volume of Environmental Restoration Program low-level waste projected to require disposal at Fernald is 1.6 million m³, and the on-site facility is designed to contain this volume. The on-site facility is expected to be filled at project completion, currently scheduled for 2007. This disposal facility has been excluded from the analyses of this Report because it is specifically designed to accommodate the volume and radiological content of the waste it is projected to receive, and cannot receive off-site waste or waste from non-cleanup activities.

2.5.3.2 Hanford Environmental Restoration Disposal Facility

The Hanford Environmental Restoration Disposal Facility is designed to dispose of on-site contaminated media generated as part of Environmental Restoration projects at the Hanford Site. The capacity of the facility is designed to equal the final disposal volume which is projected at 3.8 million m³. The Environmental Restoration Disposal Facility's initial two cells have a combined usable capacity of about 920,000 m³ and began receiving waste in July 1996. Additional cells will be commissioned as needed. This facility is also being operated under a Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision. This disposal facility has also been excluded from the analysis of this Report because it is specifically designed to accommodate the volume and radiological content of the waste it is projected to receive and cannot receive off-site waste or waste from non-cleanup activities.

2.6 Alternative Scenario Comparison of Volumetric Projections and Disposal Capacity for *To Be Determined* Low-Level Waste and Waste to be Disposed in Not-Yet-Constructed Facilities

As discussed in Section 2.2, the Department has described 330,000 m³ of the low-level waste projected to require disposal from 1998 through 2070 as *to be determined* waste, meaning that specific disposal alternatives have not been identified for this waste. In addition, the Department projects that 390,000 m³ of low-level waste will be disposed in Environmental Restoration Program disposal facilities that have not yet been constructed. In the Alternative Scenario comparison presented here, the four sites with existing facilities which each have excess disposal capacity of at least excess of 100,000 m³ are evaluated to determine whether they have sufficient volumetric capacity to accommodate the 720,000 m³ of low-level waste described above. The four DOE sites considered in this Alternative Scenario analysis are Hanford Site (200 Area), Nevada Test Site (Areas 3 and 5), Savannah River Site (Slit Trenches), and Los Alamos National Laboratory (Technical Area-54).

2.6.1 Hanford 200 Area Low-Level Burial Grounds

As discussed in Section 2.5.1.1, the Hanford 200 Area disposal facility has a low-level waste disposal capacity of about 2 million m³ and is projected to receive 520,000 m³ (including both past and future disposal volumes), leaving an estimated excess capacity of about 1.5 million m³. This facility, therefore, has enough excess volumetric disposal capacity to accommodate all of the 720,000 m³ of low-level waste considered in the Alternative Scenario.

2.6.2 Nevada Test Site Areas 3 and 5 Radioactive Waste Management Sites

As discussed in Section 2.5.1.4, the Nevada Test Site Areas 3 and 5 have a low-level waste disposal capacity of about 3.1 million m³ and are projected to receive 670,000 m³ (including both past and future disposal volumes), leaving an estimated excess capacity of about 2.4 million m³. These facilities, therefore, have enough excess volumetric disposal capacity to accommodate all of the 720,000 m³ of low-level waste considered in the Alternative Scenario.

2.6.3 Savannah River Site Slit Trenches

As discussed in Section 2.5.1.6, the Savannah River Site Slit Trenches have a low-level waste disposal capacity of about 290,000 m³ and are projected to receive 130,000 m³ (including both past and future disposal volumes), leaving an estimated excess capacity 160,000 m³. This facility, therefore, has enough excess volumetric capacity to accommodate approximately 22 percent of the 720,000 m³ of low-level waste considered in the Alternative Scenario.

2.6.4 Los Alamos National Laboratory Technical Area-54

As discussed in Section 2.5.1.3, Los Alamos National Laboratory Technical Area-54 has a current low-level waste disposal capacity of about 225,000 m³ and is projected to receive 750,000 m³ (including both past and future disposal volumes); exceeding it's current disposal capacity. Los Alamos National Laboratory is preparing an environmental impact statement that addresses the development of additional disposal capacity in Area 54. The current disposal is approximately 225,000 m³. However, there is available space for additional capacity, pending the results of the environmental impact statement. This additional disposal capacity could accommodate the past and future disposal volumes and the 720,000 m³ of low-level waste considered in the Alternative Scenario.

2.7 Alternative Scenario Comparison of Volumetric Projections and Disposal Capacity for Mixed Low-Level Waste

As discussed in Section 2.2, the Department has described 170,000 m³ of the mixed low-level waste projected to require disposal from 1998 to 2070 as *to be determined* waste. In addition, the Department projects that 35,000 m³ of mixed low-level waste will be disposed in Environmental Restoration Program disposal facilities that have not yet been constructed. In the Alternative Scenario comparison presented here, the two sites with existing facilities for mixed waste are evaluated to determine whether they have sufficient volumetric capacity to accommodate the 200,000 m³ of mixed low-level waste described above.

2.7.1 Hanford Radioactive Mixed Waste Trenches 31 and 34

As previously discussed in Section 2.5.2.1, the current capacity of the Radioactive Mixed Waste Trenches 31 and 34 at Hanford is about 42,000 m³, which is too small to accommodate the 99,000 m³ of mixed low-level waste that the Department projects will be disposed at that facility. However, there is also expandable area for increased mixed low-level waste disposal of approximately 100,000 m³, and Hanford possesses a completely unused burial ground which conceptually could accept up to 80,000 m³ of mixed low-level waste. This expansion would increase the total capacity of the facility to about 220,000 m³, which would be large enough to accommodate disposal of both the volume of waste currently projected to be disposed at the facility (42,000 m³) and about 60 percent of the 200,000 m³ of mixed low-level waste considered in the Alternative Scenario. Decisions concerning expansion of mixed low-level waste disposal capacity at Hanford will not be considered until records of decision for mixed low-level waste disposal are issued for the Department's *Waste Management Programmatic Environmental Impact Statement*.

2.7.2 Nevada Test Site Mixed Waste Disposal Unit

As previously discussed in Section 2.5.5.2, the current capacity of the Nevada Test Site Mixed Waste Disposal Unit is about 120,000 m³, all of which is essentially available for disposal of mixed low-level waste. This facility, therefore, has enough excess volumetric disposal capacity to accommodate approximately 60 percent of the 200,000 m³ of mixed low-level waste considered in the Alternative Scenario. However, as noted, the Nevada Test Site has enough expandable capacity to dispose of all the Department's projected mixed low-level waste and could be developed to do so if such a decision were supported by the mixed low-level waste disposal record of decision to be issued under the *Waste Management Programmatic Environmental Impact Statement*.

3.0 RADIOLOGICAL PROJECTIONS AND CAPACITY ANALYSIS

In Chapter 2, the volumetric capacities of low-level and mixed low-level waste disposal facilities were analyzed in relation to the waste volumes projected to be disposed of by 2070 at those facilities. In this chapter, the radiological capacities of Department low-level and mixed low-level waste disposal facilities are assessed. This assessment compares facility-specific radiological disposal limits with radionuclide inventories projected to be disposed of by 2070 at those facilities. This comparison indicates if and where projected radionuclide inventories in the waste to be disposed may exceed the radiological limits of the disposal facilities where the waste is currently planned to be disposed, so that complex-wide planning will ensure the Department does not exceed these radiological limits at any of its disposal facilities.

The procedure used to estimate the projected radionuclide inventories of low-level and mixed low-level waste to be disposed of in each facility and the methodology used to estimate disposal facility-specific radiological capacity is presented in Section 3.1. The projected radionuclide inventories of low-level and mixed low-level waste to be disposed of in each facility are presented in Section 3.2. Sources of uncertainty in the data and analysis are identified and discussed in Section 3.3. Section 3.4 contains site-specific results of low-level and mixed low-level waste radiological capacity and a discussion of the important radionuclides identified in the analysis. Section 3.5 describes alternative disposal scenarios for low-level waste and mixed low-level waste.

3.1 Methodology of the Radiological Disposal Capacity Analysis

Eight disposal facilities were evaluated to estimate their radiological disposal capacity. For each facility, the methodology for measuring radiological disposal capacity consists of four steps: (1) estimating the amounts of 49 radionuclides potentially present in the low-level and mixed low-level waste projected to be disposed at the facility; (2) determining the average concentration of each radionuclide in the total volume of waste expected to be disposed in the facility; (3) comparing the radionuclide concentrations to the radionuclide-specific concentration limits of the facility; and (4) determining a *sum-of-fractions* by adding together the 49 ratios produced from the comparisons. The sum-of-fractions is the indicator used in this analysis to evaluate a disposal facility's radiological capacity.

3.1.1 Estimation and Projection of Radioactivity for Disposal

Radionuclides included in this analysis were those with a half-life greater than five years identified in site-specific disposal performance documents. In the 1997 Waste Management Technical Data Request, sites were requested to report the radiological profile of their low-level and mixed lowlevel waste using 49 radionuclides. Some facilities identified certain radionuclide groups to facilitate their reporting. These radionuclide groups included mixed fission products, mixed activation products, natural uranium, and weapons plutonium. The radionuclide distributions that were assumed in this Report for these groups are shown in Table 3-1. Radioactivity profiles were also provided in the *Mixed Waste Inventory Report*, 1995, and the Environmental Restoration Core Database, which were also used to estimate and project radiological profiles of low-level and mixed low-level wastes identified for disposal.

Table 3-1. Assumed Distributions for Mixed Fission Products, Mixed Activation Products,
Weapons Plutonium, and Natural Uranium (DOE, 1997)

Radionuclide	Relative Activity (%)				
Mixed Fis	Mixed Fission Products				
Sr-90	47.0				
Tc-99	0.02				
Cs-137	49.0				
Cd-113m	0.13				
Sn-121	0.09				
Sm-151	1.4				
Eu-152	2.0				
Eu-154	0.36				
Weapor	ns Plutonium				
Pu-239	81.0				
Pu-240	19.0				

-	
Radionuclide	Relative Activity
	(%)
Mixed Activ	vation Products
C-14	7.0
Co-60	67.0
Cs-137	5.0
Eu-152	3.0
Eu-154	18.0
Natura	l Uranium
U-234	48.7
U-235	2.2
U-238	49.1

No attempt was made to associate radioactive decay products with parent radionuclides because the decay products are already considered in the estimation of the disposal limits for the parent radionuclides used in this analysis. However, if radioactive decay products were listed explicitly by the sites, they were also included in the analysis.

Radioactivity data for low-level and mixed low-level waste were collected from a 1997 Waste Management Technical Data Call, the *Mixed Waste Inventory Report, 1995*, and the Environmental Restoration Core Database, as well as estimates based on other existing waste stream information. Waste volume data was based on past disposal volume data provided by the disposal sites and projected disposal volume data from the March 1998 *Paths to Closure* waste volume database. The *Paths to Closure* data does not include radiological data for low-level and mixed low-level waste streams.

The Department attempted to crosswalk the low-level and mixed low-level waste streams from the *Paths to Closure* database to the radioactivity data from the other data sources. However, many waste streams could not be crosswalked between the data sources. For these waste streams, the Department estimated radionuclide profiles by combining and volume-weighting the radionuclide concentrations of other waste streams as presented in the other data sources, and

applied the profiles to Paths to Closure waste stream volumes. The composite profiles were generally developed based on other waste streams generated at the same site with similar physical and radiological characteristics. The specific basis for the radionuclide concentrations applied to each waste stream are presented in Appendices D-1 (for non-Environmental Restoration Program waste streams) and D-2 (for Environmental Restoration Program waste streams). As further discussed in Section 3.3, this method of extrapolating radionuclide profiles does increase uncertainty in the data and may overestimate the total radionuclide content of a waste stream. However, for the purposes of this analysis, such conservatism was deemed acceptable.

3.1.2 Formulas Used in Sum-of-Fractions Capacity Analysis

For a given disposal facility, the total activity of each radionuclide in the disposed waste in curies (Ci) is the sum of its activities from all waste expected to be disposed of in the facility from all sources. The average curie concentration of a radionuclide in the disposed waste (in Ci/m³) equals the total activity of that radionuclide in the disposed waste (in Ci) divided by the total volume of waste disposed in the facility (in m³). The following equation shows this relationship:

$$C_i = \frac{R_i}{V}$$

where:

 $C_i =$ the average concentration of radionuclide *I* in the disposed waste, in Ci/m³; $R_i =$ the total activity of radionuclide *I* in the disposed waste, in Ci; and V = the total volume of waste disposed in the facility, in m³.

Each radionuclide concentration is then compared to disposal limits for each facility to determine the ratio of the radionuclide concentration to its respective disposal limit. Each ratio is determined by the following relationship:

$$\frac{C_i}{L_i}$$

where: $L_i =$ the facility-specific concentration limit for radionuclide *I*, in Ci/m³. (The sources of the disposal limits used in this analysis are discussed in Section 3.1.3.)

The ratios for each radionuclide concentration in the waste to its limiting concentration are summed using the sum-of-fractions method described in 10 CFR Part 61.55. The sum-of-fractions is calculated as follows:

$$Sum - of - Fractions = \sum \frac{C_i}{L_i}$$

The sum-of fractions method is used to determine if a volume of waste with multiple radionuclides meets the combined limits for each individual radionuclide. Values less than one indicate that the limits are not exceeded. For example, if radionuclide A has an average concentration of 1 and a limit of 3 and radionuclide B has an average concentration of 1 and a limit of 2, then the sum-of-fractions method results in a value of 5/6 (1/3 + 1/2), indicating that the combined radiological limits based on the two radionuclides in the waste is not exceeded.

3.1.3 Disposal Limits Used in the Radiological Capacity Analysis

The initial estimates of radiological disposal capacity are based on the *Performance Evaluation of the Technical Capabilities of DOE Sites for Disposal of Mixed Low-Level Waste* (DOE, 1996). This *Performance Evaluation* used the performance objectives from DOE Order 5820.2A and screening-level representations of the transport mechanisms used in the site-specific performance assessments to make estimates of disposal limits for several radionuclides. This *Performance Evaluation* report was used as part of the Federal Facility Compliance Act process to identify potential sites for disposal of DOE's mixed low-level waste.

Because the *Performance Evaluation* methodology was generally more conservative than the site-specific performance assessments from which it was derived, it was not used as the final arbiter for sum-of-fractions calculations. Rather, it was used to identify where the contribution of a radionuclide to the sum-of-fractions was 0.1 or greater. For these radionuclides, the disposal limit values from the site-specific performance assessments and the waste acceptance criteria derived from them were substituted in this evaluation. The site-specific documents from which radionuclide-specific values were identified are listed in Table 3-2.

The performance assessments and waste acceptance criteria for most sites consist of only one set of disposal limits. However, the waste acceptance criteria for the Hanford Site are provided as two sets of limits corresponding to two different intruder scenarios: Category 1 limits assume a homesteader intrusion scenario and Category 3 limits assume a post-drilling intruder scenario. The limits for waste disposed under Category 3 are less stringent than those for Category 1 because of the application of additional disposal measures such as more confining waste forms or deeper burial.

In Appendix B where the sum-of fractions calculations and results for each disposal facility are presented, the column in each table labeled "Source" indicates the source of the disposal limits (Performance Evaluation [PE], Performance Assessment [PA], or Waste Acceptance Criteria [WAC]) for each radionuclide. An additional column labeled "Pathway" indicates which pathway analysis (water, atmospheric, or intruder) provides the most limiting concentration.

Disposal Facility	Document(s)
Hanford Site	Hanford Site Solid Waste Acceptance Criteria (WMH-EP-0063-Revision 5)
Idaho National Engineering and Environmental Laboratory	Addendum to Radioactive Waste Management Complex Low-Level Waste Radiological Performance Assessment (EGG-WM-8773) (INEEL/EXT-97-8773)
Los Alamos National Laboratory	Performance Assessment and Composite Analysis for Los Alamos National Laboratory Material Disposition Area G (LA-UR-97-85)
Nevada Test Site	Nevada Test Site Waste Acceptance Criteria—Revision 0
Oak Ridge Reservation	Performance Assessment for Continuing and Future Operations at Solid Waste Storage Area 6 (ORNL-6783/R1)
Savannah River Site Low Activity Waste Vaults	Radiological Performance Assessment for the E-Area Vaults Disposal Facility (WSRC-RP-94-218, Rev. 0) E-Area Vaults Low-Level Radioactive Solid Waste Acceptance Criteria (WSRC 1S, Procedure 3.10, Revision No. 2)
Savannah River Site Intermediate Level Vaults	Radiological Performance Assessment for the E-Area Vaults Disposal Facility (WSRC-RP-94-218, Rev. 0) E-Area Vaults Low-Level Radioactive Solid Waste Acceptance Criteria (WSRC 1S, Procedure 3.10, Revision No. 2)
Savannah River Site Slit Trenches	Radiological Performance Assessment for the E-Area Vaults Disposal Facility (WSRC-RP-94-218, Rev. 0), Appendix I SRS Radioactive Soil and Rubble Management Program and Waste Acceptance Criteria (WSRC 1S, Procedure 3.15, Revision 1

Table 3-2. Site-Specific Documents Used for Disposal Limits in the Radiological Capacity Analysis

3.2 Radionuclide Inventory Projections for Low-Level and Mixed Low-Level Waste

Table 3-3 presents the radionuclide inventories of low-level waste already disposed and projected to be disposed through 2070 at eight specific disposal facilities operated by the Waste Management Program. This group of inventories is considered the Base Case, as it includes only waste that is destined for specific DOE disposal facilities. Also shown in Table 3-3 is the radionuclide inventory for the Alternative Case low-level waste, which is comprised of low-level waste whose disposition is *to be determined* combined with Environmental Restoration Program low-level waste to be disposed in not-yet-constructed CERCLA disposal facilities. The Alternative Scenario waste does not include waste to be disposed at commercial facilities.

As described in Chapter 2, the Environmental Restoration Program operates two CERCLA disposal facilities located at the Fernald Environmental Management Project and Hanford Site. The Department has not included these facilities and the waste to be disposed in them in this analysis because these facilities accept waste under records of decision prepared in accordance with cleanup activities under CERCLA. All waste destined to be disposed in these facilities is within the facilities' established radiological capacity limits.

	Radionuclide Inventories (Ci)									
Nuclide	Base Case Alternat.							Alternat.	T ()	
	Hanford	INEEL	LANL	NTS	ORR	SRSLAW	SRS IL	SRS Slit	Scenario	Total
Al-26	0.0e+00	0.0e+00	3.8e-08	1.0e-05	1.0e-03	0.0e+00	0.0e+00	0.0e+00	3.7e-06	1.0E-03
Am-241	5.4e+02	5.9e+00	9.3e+01	4.9e+01	3.3e-02	4.9e+00	3.6e+00	1.1e-01	2.2e+01	7.2E+02
Am-243	2.1e-01	1.3e-02	2.7e-03	9.9e-03	6.5e-04	2.7e-05	0.0e+00	0.0e+00	1.1e+01	1.1E+01
Ba-133	4.3e-03	1.4e+01	1.4e+03	1.5e+01	1.1e-05	0.0e+00	0.0e+00	0.0e+00	1.2e+02	1.5E+03
C-14	3.9e+02	6.3e+03	1.4e+00	7.5e+01	1.8e-01	6.7e-02	1.5e+00	6.8e-02	4.2e+02	7.2E+03
C-14 am	0.0e+00	0.0e+00	0.0e+00	4.2e-07	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	4.2E-07
Cd-113m	0.0e+00	1.1e+02	5.1e-01	2.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	5.3e-01	1.1e+02
Cl-36	9.1e-06	0.0e+00	1.6e-02	5.2e-02	0.0e+00	0.0e+00	0.0e+00	0.0e+00	1.7e+02	1.7E+02
Cm-243	3.0e-01	3.4e-03	0.0e+00	3.2e-02	5.7e-05	0.0e+00	0.0e+00	6.4e-03	1.4e-02	3.6E-01
Cm-244	5.4e+00	4.5e-01	0.0e+00	3.6e-01	9.4e+00	3.6e-02	0.0e+00	6.4e-03	4.1e+03	4.1E+03
Co-60	1.2e+06	1.6e+07	1.9e+03	1.7e+05	1.4e+02	1.9e+01	7.6e+02	5.1e-01	1.2e+07	2.9E+07
Cs-135	0.0e+00	1.3e-01	7.7e-02	2.2e-03	0.0e+00	2.1e-09	0.0e+00	0.0e+00	7.8e-04	2.1E-01
Cs-137	2.1e+07	8.4e+04	1.1e+02	9.6e+05	5.7e+01	6.8e+01	7.3e+02	1.2e+01	7.3e+05	2.3e+07
Eu-152	1.3e+03	1.6e+04	9.9e-01	1.9e+02	6.5e+01	1.6e+00	0.0e+00	1.3e-03	3.8e+04	5.6e+04
Eu-154	1.9e+03	1.6e+04	2.9e+00	1.0e+03	3.0e+00	1.1e+00	0.0e+00	9.3e-04	1.7e+03	2.1e+04
H-3	1.4e+05	5.4e+06	6.4e+05	2.9e+06	1.3e+04	1.6e+05	4.4e+05	2.5e+01	9.8e+06	1.9e+07
I-129	1.6e+00	3.0e-01	1.5e-06	7.8e-02	1.5e-06	4.3e-05	8.5e-05	5.2e-03	2.8e-01	2.3e+00
K-40	3.3e-02	1.7e-01	3.5e-01	4.1e-01	1.3e-02	0.0e+00	0.0e+00	2.5e-05	3.4e+01	3.5e+01
Nb-93m	0.0e+00	5.9e+02	0.0e+00	6.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	4.6e+02	1.1e+03
Nb-94	0.0e+00	2.7e+01	2.8e-02	2.7e-01	0.0e+00	0.0e+00	0.0e+00	0.0e+00	2.1e+01	4.8e+01
Ni-59	4.9e+03	8.1e+04	3.9e-01	8.6e+02	5.3e-04	5.4e-02	4.7e-01	4.9e-02	6.2e+04	1.5E+05
Ni-63	8.2e+05	3.0e+06	6.5e-02	3.9e+04	6.0e+00	6.9e+00	4.6e+01	1.3e-01	3.1e+06	7.0E+06
Np-237	2.5e-01	3.4e-01	3.9e-03	4.4e-02	6.5e-03	1.7e+00	1.4e-04	7.4e-03	3.6e+00	6.0E+00
Pa-231	1.1e-05	0.0e+00	9.0e-09	1.8e+01	0.0e+00	0.0e+00	0.0e+00	0.0e+00	1.2e-01	1.8e+01
Pu-238	1.4e+02	1.8e+00	1.9e+02	1.2e+02	9.5e-03	3.2e+01	3.8e+00	1.7e-02	5.3e+00	4.9e+02
Pu-239	4.0e+02	5.0e+00	3.8e+02	1.3e+02	1.9e-02	4.5e+01	7.6e-02	9.5e-03	1.5e+01	9.8e+02
Pu-240	1.2e+02	4.2e-01	3.3e+00	2.8e+01	3.6e-02	6.9e+00	3.1e-02	4.1e-03	1.8e+01	1.8e+02
Pu-241	7.2e+02	1.5e+01	3.2e+01	5.5e+02	3.4e-06	1.0e+02	1.9e+00	8.3e-02	2.1e+01	1.4e+03
Pu-242	6.9e-03	3.6e-04	5.7e-03	1.7e+02	3.0e-06		4.1e-05	4.2e-05	4.9e-03	1.7e+02
Pu-244	9.4e-05	0.0e+00	0.0e+00	4.4e-06	1.0e-06		0.0e+00	0.0e+00	1.6e-06	1.0e-04
Ra-226	2.6e-02	3.8e+01	2.4e-01	3.8e+03	4.2e-03		1.4e+01	2.0e-03	8.0e+01	3.9e+03
Ra-228	0.0e+00	0.0e+00	0.0e+00	2.4e+00	1.1e-02	1.3e-03	0.0e+00	4.0e-04	2.5e+00	4.9e+00
Se-79	1.9e-03	0.0e+00	2.5e-06	1.6e-03	0.0e+00	1.5e-01	4.6e-04	1.0e-07	6.0e-04	1.5e-01
Sm-151	0.0e+00	1.3e+03	7.0e-02	2.3e+01	1.1e-03	2.1e-04	0.0e+00	0.0e+00	1.2e+02	1.4e+03
Sn-121m	0.0e+00	1.8e+02	0.0e+00	2.4e+00	0.0e+00					2.6e+02
Sn-126	0.0e+00	0.0e+00	0.0e+00	1.1e-04	0.0e+00	7.6e-03	4.9e-05	3.4e-03	4.1e-05	1.1e-02
Sr-90	2.4e+07	4.2e+04	2.9e+01	1.1e+06	3.1e+01	4.0e+01	3.2e+00		4.1e+05	2.6e+07
Tc-99	1.6e+02	1.9e+01	2.5e+00	2.7e+01	1.4e-03		8.4e-02	2.0e-02	2.7e+01	2.4e+02
Th-229	5.3e-04	1.8e-03	1.7e-02	2.2e-04	6.0e-08	0.0e+00	0.0e+00		5.4e-01	5.6e-01
Th-230	2.1e-03	2.0e-02	1.6e-04	1.1e+03	2.4e-03		0.0e+00	0.0e+00	4.8e+00	1.1e+03
Th-232	3.3e-01	4.6e+00	1.4e+00	1.8e+02	1.4e-02	1.3e-03	3.7e-04	3.6e-05	6.9e+00	1.9e+02
U-232	6.0e-04	2.2e+00	8.7e-02	2.4e-02	6.0e-02		0.0e+00		6.6e-02	2.4e+00
U-233	6.5e+00	9.0e-02	4.5e-01	1.7e+00	1.0e-02	7.2e-02	1.8e+00	9.7e-04	3.0e+00	1.4e+01
U-234	1.0e+02	5.8e-01	3.1e+01	1.9e+03	6.1e-01	7.5e+00	1.9e+00	1.0e-02	1.3e+03	3.3e+03
U-235	2.6e+00	7.9e+00	4.0e+00	4.4e+02	2.2e-02	1.5e-01	1.0e-01	4.9e-04	9.9e+02	1.4e+03
U-236	1.4e+00	1.1e-01	2.6e-03	7.9e-02	4.8e-05		2.7e-02	2.1e-07	1.4e-01	3.0e+00
U-238	1.2e+02	3.4e+02	7.5e+01	1.1e+04	3.4e-01	3.3e+00	9.4e+00		1.4e+03	1.3e+04
Zr-93	0.0e+00	2.3e+01	2.8e-05	2.3e-01	0.0e+00					4.1e+01

Table 3-3. Base Case and Alternative Scenario Low-Level Waste RadioactivityInventories (1988-2070) by Disposal Facility

NOTES: INEEL = Idaho National Engineering and Environmental Laboratory, LANL = Los Alamos National Laboratory, NTS = Nevada Test Site, ORR = Oak Ridge Reservation, SRS = Savannah River Site, LAW = Low Activity Waste, IL = Intermediate Level.

Table 3-4 presents the estimated radionuclide inventories of mixed low-level waste projected to be disposed through 2070. The column identified as "Complexwide MLLW" presents the total radiological inventory of all mixed low-level waste that the Department projects will be disposed in DOE facilities, including waste destined for disposal at Hanford and Nevada Test Site, waste destined for disposal at a facility *to be determined*, and waste to be disposed in Environmental Restoration Program CERCLA disposal facilities that are not yet constructed. The inventory identified as "Hanford LLW plus MLLW" presents the sum of the radiological inventory of Hanford low-level waste (from Table 3-3) and the "Complexwide MLLW" inventory. Table 3-4 also presents a similar inventory of all mixed low-level waste and NTS low-level waste. Mixed low-level waste that is planned to be disposed of commercially was not included in this analysis. The combined radiological inventories of mixed low-level waste and either Hanford low-level waste or Nevada Test Site low-level waste represent the inventories used in the mixed low-level waste Alternative Scenario analysis presented in Sections 3.4.1 and 3.4.4, respectively.

	R	adioactivity (Ci)		Radioactivity (Ci)			
		Alternativ	e Scenarios			e Scenarios		
Nuclide	Complex-wide MLLW	Hanford LLW plus MLLW	NTS LLW plus MLLW	Nuclide	Complex-wide MLLW	Hanford LLW plus MLLW	NTS LLW plus MLLW	
Al-26	0.0E+00	0.0E+00	9.6E-06	Pu-238	6.0E-01	1.4E+02	1.2E+02	
Am-241	6.7E+01	5.7E+02	1.0E+02	Pu-239	3.2E+02	6.9E+02	6.3E+02	
Am-243	0.0E+00	8.1E-01	9.5E-03	Pu-240	2.3E+00	1.3E+02	2.9E+01	
Ba-133	0.0E+00	2.0E-02	1.4E+01	Pu-241	0.0E+00	7.0E+02	5.4E+02	
C-14	0.0E+00	3.7E+02	7.2E+01	Pu-242	0.0E+00	2.7E-02	1.7E+02	
C-14 am	0.0E+00	0.0E+00	4.1E-07	Pu-244	0.0E+00	4.3E-04	4.2E-06	
Cd-113m	0.0E+00	0.0E+00	1.9E+00	Ra-226	3.7E-03	7.7E-02	3.8E+03	
Cl-36	0.0E+00	8.2E-06	5.0E-02	Ra-228	0.0E+00	0.0E+00	2.4E+00	
Cm-243	0.0E+00	1.4E+00	3.0E-02	Se-79	0.0E+00	1.7E-03	1.6E-03	
Cm-244	0.0E+00	5.0E+00	3.4E-01	Sm-151	0.0E+00	0.0E+00	2.2E+01	
Co-60	6.9E+04	1.2E+06	2.4E+05	Sn-121m	0.0E+00	0.0E+00	2.3E+00	
Cs-135	0.0E+00	0.0E+00	2.1E-03	Sn-126	0.0E+00	0.0E+00	1.1E-04	
Cs-137	5.4E+03	1.9E+07	9.2E+05	Sr-90	8.2E+03	2.1E+07	1.1E+06	
Eu-152	3.1E-02	1.3E+03	1.8E+02	Tc-99	6.0E+02	7.4E+02	6.2E+02	
Eu-154	5.5E-04	1.9E+03	9.9E+02	Th-229	3.3E-01	3.3E-01	3.3E-01	
H-3	5.8E+08	5.8E+08	5.8E+08	Th-230	1.9E+01	1.9E+01	1.2E+03	
I-129	0.0E+00	1.5E+00	7.5E-02	Th-232	3.4E-01	7.2E-01	1.8E+02	
K-40	0.0E+00	3.8E-02	3.9E-01	U-232	0.0E+00	2.8E-03	2.3E-02	
Nb-93m	0.0E+00	0.0E+00	5.7E+00	U-233	1.8E+00	7.7E+00	3.4E+00	
Nb-94	0.0E+00	0.0E+00	2.6E-01	U-234	1.9E+03	2.0E+03	3.9E+03	
Ni-59	0.0E+00	4.9E+03	8.3E+02	U-235	7.7E-01	3.3E+00	4.4E+02	
Ni-63	0.0E+00	8.2E+05	3.7E+04	U-236	1.5E-01	1.4E+00	2.2E-01	
Np-237	8.3E+01	8.3E+01	8.3E+01	U-238	6.9E+02	8.0E+02	1.2E+04	
Pa-231	7.7E-06	5.9E-05	1.8E+01	Zr-93	0.0E+00	0.0E+00	2.2E-01	

Table 3-4. Mixed Low-Level Waste and Alternative Scenario Combined Low-Level and
Mixed Low-Level Waste Radioactivity Inventories
at Hanford and Nevada Test Site (1988-2070)

NOTES: NTS = Nevada Test Site, MLLW = mixed low-level waste, LLW = low-level waste

Appendix B provides additional details on the inventories, including the inventory by disposal site, by nuclide, and by generating organization (i.e., Waste Management or Environmental

Restoration) for projected waste. Appendix B also includes radionuclide information for already disposed waste (1988-1997).

3.3 Sources of Uncertainty in the Analysis

The uncertainty in this radiological capacity analysis stems from two primary sources: (1) the estimation of facility-specific disposal limits, and (2) the estimation and projection of facility-specific radionuclide inventories. In most of the examples discussed below, the uncertainties identified in the radiological assessment methodology result in an overestimate of the total radiological profile, and thus present a more conservative picture than may be faced when projected waste is actually generated and ready for disposal. Therefore, it is expected that the site-specific radiological capacity results discussed in Section 3.4 may underestimate the available radiological disposal capacity for each disposal facility. As discussed further below, it is expected that future analysis and research will help reduce these uncertainties, and will be reflected in future revisions of this Report (Revision 2).

3.3.1 Uncertainty in Disposal Limits

The methodology for estimating radiological capacity described in Section 3.1 uses values from the *Performance Evaluation* project report (DOE, 1996) as the initial set of disposal limits to identify radionuclides with sum-of-fractions values of 0.1 or greater. Substituting facility-specific values from the performance assessments or waste acceptance criteria refines the disposal limits for these radionuclides. Performance assessments are generally based on limited data and understanding of the interactions of radionuclides and the surrounding environment. To address these general shortcomings, the Department requires periodic review and revision of these site-specific performance assessments, a process known as performance assessment maintenance.

As additional operational experience is gained and as new research on environmental transport is incorporated into the performance assessments, disposal limits change. Conservatism is typically used to address uncertain processes and data. As this uncertainty is reduced or removed, the disposal limits tend to be less restrictive. However, future research may also reveal mechanisms that require some disposal limits to become more restrictive. The ultimate disposal limits in use at facility closure are not now known, and this lack of knowledge results in a potentially significant source of uncertainty.

3.3.2 Uncertainty in Estimation and Projection of Radionuclide Inventories

The procedure for estimating and projecting radionuclide inventories for comparison with facilityspecific disposal limits is described in Section 3.1.1. This report afforded the first complex-wide opportunity for the Department to estimate and compare radionuclide inventories and concentrations in projected low-level waste with radiological capacities of DOE's existing Waste Management Program disposal facilities. (These types of data were collected for mixed low-level waste in 1994 and 1995.) Several sources of uncertainty exist in this estimation and projection procedure. The most significant sources of uncertainty arise from: (1) assigning radionuclide concentration profiles to waste streams with no profiles, (2) estimating aggregate radionuclide profiles at year 2070 by projecting existing radiological profiles, and (3) assigning disposal locations for waste streams.

3.3.2.1 Assigning Radionuclide Concentration Profiles to Waste Streams with No Profiles

As discussed in Section 3.1.1, the Department has compiled radiological profile data for only a subset of the *Paths to Closure* waste streams used in this analysis. Therefore, in cases where radiological profiles were not provided, DOE applied available waste characterization data from the Environmental Restoration Core Database or the Waste Management Technical Data Call to waste streams identified in the draft *Paths to Closure* coming from the same site and having similar media and waste type data. For example, a low-level waste rubble/debris waste stream from Hanford without radiological characterization was assigned the same radiological profile as a Hanford rubble/debris waste stream with reported radiological characterization. However, as noted, there is uncertainty associated with this approach because waste streams coming from different sources within a site may have different radiological profiles. Additionally, as discussed below, available concentration data often overestimates or provides only maximum concentration estimates of the radionuclide content of the waste.

Radiological data from the Environmental Restoration Core Database has several limitations, described below, that increased the level of uncertainty in this analysis. The specific approaches and assumptions made to accommodate weaknesses in the Core data are provided in Appendix D2.

Identification of Contaminants: The radionuclide data in the Core database was collected to help Headquarters monitor and coordinate Field projects. The database generally identifies only those radionuclides that are important in determining response decisions and, for some waste streams, does not provide any radionuclide concentration data. These radionuclides typically are only a subset of the radionuclides actually present. Additionally, the radionuclides important for determining response decisions are not necessarily the same as those important for determining disposal capacity. Also, some of the contaminants identified in the Core database do not correspond directly to specific nuclides. In these cases, waste stream specific assumptions were made in this analysis about how each contaminant would be handled. For example, some waste streams identified concentrations of both uranium and plutonium isotopes as well as a gross alpha concentration represented uranium and plutonium isotopes (particularly if the gross alpha concentration was about equal to the sum of the uranium and plutonium concentrations). In another example, total uranium was assumed to be a combination of the uranium isotopes in proportion according to their natural relative abundance.

Waste Density: Contaminant concentrations in the Core database are almost always provided in a weight basis. To convert to a volume concentration basis (which is needed for this analysis) a waste density must be used. Because the Core database contains limited waste density data, a uniform waste density of 1.6 MT/m³ (about the same as soil) was assumed for this analysis.

Average Contaminant Concentrations: For some contaminants in some waste streams, the Core database contained only maximum contaminant concentrations instead of the average

concentrations needed for this analysis. In these cases, the maximum concentration was used in the analysis, but may not be representative of and may overestimate the average concentration across the waste stream.

3.3.2.2 Estimating Aggregate Radionuclide Profiles at Year 2070 by Projection

For those waste streams with reported radiological characterizations, these characterizations are for existing waste or waste expected to be generated in the near future. For example, the data in the 1995 *Mixed Waste Inventory Report* database includes current inventories and 5-year projected inventories. These profiles do not necessarily represent long-term trends in radionuclide concentration profiles because the profiles may change as future waste generation processes change (e.g., due to waste minimization and changes in future missions).

Because long-term radiological profiles are not available, the existing radionuclide profiles were used when projecting waste volumes over the life-cycle of the disposal facility. The approach used to estimate inventories through 2070 are based on limited near-term characterization data. This approach is another source of uncertainty in the analysis.

3.3.2.3 Assigning Disposal Locations for Waste Streams

Disposal locations used in this analysis were based on disposal locations specified by the waste generating sites in the *Paths to Closure* waste volume database. These traditional locations for waste disposal may change in the future depending on complex-wide decisions such as the records of decision based on the *Waste Management Programmatic Environmental Impact Statement*. Additionally, this analysis may indicate potential limitations of a disposal site that can be resolved by strategically disposing of specific waste streams at other disposal facilities or through additional treatment and waste form adjustments. The lack of certainty related to future disposal locations for specific waste streams is another uncertainty in the analysis.

3.4 Base Case Facility-Specific Radiological Projections and Capacities

In this section, the radiological capacity of each of the eight Waste Management Program lowlevel waste disposal facilities is compared with total radionuclide inventories projected for the 1988-2070 time frame.

The results of the Base Case sum-of-fractions analysis for these facilities are presented in Table 3-5. The sum-of-fractions value is less than or equal to 1.0 for all except one of the eight disposal facilities. Sum-of-fractions values of less than or equal to 1.0 indicate that these disposal facilities appear to possess adequate radiological capacity to dispose of the waste projected to be disposed in them. Only the Savannah River Site Intermediate Level Vault is projected to have a sum-of-fractions value greater than 1.0. The sum-of-fractions value greater than 1.0 at the Savannah River Site Intermediate Level Vault indicates that this facility may not possess adequate radiological capacity to accommodate the waste currently projected to be disposed at that facility. However, as noted it cannot be concluded at this time that the Intermediate Level Vaults would

not be able to dispose of the waste expected to be disposed by the Savannah River Site. Reduction of uncertainties and a more strategic focus on specific waste streams will be required to resolve these issues. The facility-specific bases for these results are presented in the following sections with a discussion of the significant uncertainties associated with these results. The detailed results of the sum-of-fractions analyses, including the ratio of each radionuclide to its site-specific limit, are found in Appendix B.

Disposal Facility/Site	Sum of Fractions
Hanford Site	0.3
Idaho National Engineering and Environmental Laboratory	0.8^{*}
Los Alamos National Laboratory	0.3
Nevada Test Site	0.6
Oak Ridge Reservation	1.0
Savannah River Site Low Activity Waste Vaults	0.8
Savannah River Site Intermediate Level Vaults	2.7
Savannah River Site Slit Trenches	1.0

 Table 3.5. Base Case Sum-of-Fractions Results for Low-Level Waste Disposal

The sum-of-fractions value for Idaho does not include contributions from K-40, Ra-226 and Th-232. The site-specific performance assessment did not evaluate these radionuclides and therefore the waste acceptance criteria provide no disposal limits for them. Additional discussion is provided in Section 3.4.2.

3.4.1 Hanford Site 200 Area Low-Level Burial Ground

The sum-of-fractions value for the Hanford 200 Area Low-Level Burial Grounds is estimated to be 0.3 for the low-level waste projected to be disposed at that facility through 2070. There are no radionuclides that contribute more than 0.1 to the sum-of-fractions value for the low-level waste.

Based on the projected inventory used in this analysis and the current waste acceptance criteria, the radiological capacity of this disposal facility will not be exceeded throughout the duration of disposal for low-level waste.

3.4.2 Idaho National Engineering and Environmental Laboratory Radioactive Waste Management Complex

The sum-of-fractions value for the Idaho National Engineering and Environmental Laboratory Radioactive Waste Management Complex was initially calculated to be 16, with Ra-226 contributing 13, Th-232 contributing 2, and K-40 contributing 0.1 to the total sum-of-fractions value. However, these contributions to the sum-of-fractions value were based on disposal limits from the *Performance Evaluation* rather than limits from the site-specific performance assessment

or waste acceptance criteria. The site-specific performance assessment did not evaluate these radionuclides and the waste acceptance criteria provide no disposal limits for them because the site does not anticipate disposal of these radionuclides. Therefore, these radionuclides were not further considered in the analysis. After removing these radionuclides from the analysis, the sum-of-fractions value for this facility is 0.8. Radionuclides contributing more than 0.1 to the sum-of-fractions value are Cs-137 with 0.3, U-238 with 0.2, and Sr-90 with 0.1. These contributions are based on disposal limits from the site-specific performance assessment.

The potential contributions of Ra-226, Th-232, and K-40 to the sum-of-fractions value cannot be evaluated further without site-specific disposal limits, and as noted, disposal of these radionuclides is not anticipated at this time. Because of the lack of site-specific knowledge about the contribution of Ra-226, Th-232, and K-40 to the sum-of-fractions value, their contributions were omitted from the sum-of-fractions value of 0.8 reported in Table 3-5. As discussed in Section 3.3, there are significant uncertainties associated with the procedure for estimating and projecting the radiological profile to year 2070. Using the *Performance Evaluation* disposal limits, the sum-of-fractions value would be near one if the Ra-226 and Th-232 inventories were reduced by approximately 36 and 3 Ci, respectively.

Based on the projected inventory used in this analysis and the current waste acceptance criteria, the radiological capacity of this disposal facility would not be exceeded throughout the duration of disposal for low-level waste. However, if significant inventories of Ra-226 and Th-232 are expected to be disposed of at Idaho National Engineering and Environmental Laboratory, then disposal limits must be established for these radionuclides.

3.4.3 Los Alamos National Laboratory Technical Area-54

The sum-of-fractions value for the Los Alamos National Laboratory Technical Area-54 is estimated to be 0.3 for the low-level waste projected to be disposed at that facility through 2070. There are no radionuclides that contribute more than 0.1 to the sum-of-fractions value for the low-level waste.

Based on the projected inventory used in this analysis and the current waste acceptance criteria, the radiological capacity of this disposal facility will not be exceeded throughout the duration of disposal for low-level waste.

3.4.4 Nevada Test Site Areas 3 and 5

The sum-of-fractions value for the Nevada Test Site Areas 3 and 5 is estimated to be 0.6 for the low-level waste projected to be disposed at that facility through 2070. Radionuclides contributing at least 0.1 to the sum-of-fractions value are Cs-137, which contributes 0.2, and Ra-226, which contributes 0.1.

Based on the projected inventory used in this analysis and the current waste acceptance criteria, the radiological capacity of this disposal facility will not be exceeded throughout the duration of disposal for low-level waste.

3.4.5 Oak Ridge Reservation Interim Waste Management Facility

The sum-of-fractions value for the Oak Ridge Reservation Interim Waste Management Facility is estimated to be 1 for the low-level waste currently disposed at the facility. The Department does not project to dispose of additional low-level waste at this facility. Radionuclides contributing at least 0.1 to the sum-of-fractions value are U-234, which contributes 0.7, and Cs-137, which contributes 0.2.

Based on the inventory used in this analysis and the current waste acceptance criteria, the radiological capacity of this disposal facility has not been exceeded.

3.4.6 Savannah River Site

The Department separately evaluated the following three low-level waste disposal facilities at the Savannah River Site: the Low Activity Waste Vaults, the Intermediate Level Vault, and the Slit Trenches.

3.4.6.1 Low Activity Waste Vaults

The sum-of-fractions value for the Savannah River Low Activity Waste Vaults is estimated to be 0.8 for the low-level waste projected to be disposed at the facility through 2070. Radionuclides contributing at least 0.1 to the sum-of-fractions value are tritium (H-3), which contributes 0.3, and Np-237, which contributes 0.1.

Based on the projected inventory used in this analysis and the current waste acceptance criteria, the radiological capacity of this disposal facility will not be exceeded throughout the duration of disposal for low-level waste.

3.4.6.2 Intermediate Level Vaults

The sum-of-fractions value for the Savannah River Intermediate Level Vault is estimated to be 2.7 for the low-level waste projected to be disposed at the facility through 2070. Radionuclides contributing at least 0.1 to the sum-of-fractions value are H-3, which contributes 1.4, U-233, which contributes 0.5, I-129 and U-238, which each contribute 0.3, and C-14, which contributes 0.2. These results are based on the values contained in the performance assessment for the Intermediate Level Vaults.

The radiological capacity has not yet been exceeded for this site, efforts can be taken to reduce uncertainties in projected inventories and performance assessment attributes in the analysis and confirm whether an exceedance of the radiological limits would still exist. Additional waste treatment, waste form adjustments, or disposal of specific waste streams at other Savannah River Site trenches or at another DOE site could also avoid radiological capacity exceedances.

3.4.6.3 Slit Trenches

The sum-of-fractions value for the Savannah River Slit Trenches is estimated to be 1 for the lowlevel waste projected to be disposed in that facility through 2070. Radionuclides contributing more than 0.1 to the sum-of-fractions value include I-129, which contributes 0.5, H-3, which contributes 0.3, and Np-237, which contributes 0.1.

Based on the projected inventory used in this analysis and the current waste acceptance criteria, the radiological capacity of this disposal facility will not be exceeded throughout the duration of disposal for low-level waste.

3.5 Alternative Scenario Facility-Specific Radiological Projections and Capacities

This section presents the sum-of-fractions results for five alternative scenarios involving different disposal facilities for certain low-level and mixed low-level waste streams. Three alternative scenarios involve low-level waste and calculate the effect on the sum-of-fractions values at three Waste Management Program low-level waste disposal facilities (Hanford Site, Los Alamos National Laboratory, and Nevada Test Site) if these facilities received additional low-level waste. The additional low-level waste disposed at these facilities in the low-level waste alternative scenarios has a volume of 720,000 m³ and is comprised of all low-level waste classified as *to be determined* (330,000 m³) and all low-level waste projected to be disposed in not-yet-constructed CERCLA disposal facilities (390,000 m³). These three disposal facilities were selected for the low-level waste alternative scenarios because they have enough excess volumetric capacity to accommodate the entire 720,000 m³ of additional low-level waste.

In addition, two alternative scenarios involve mixed low-level waste disposal at the Waste Management Program disposal facilities at Hanford Site and Nevada Test Site. These scenarios calculate the effect on the sum-of-fractions values at these sites if these facilities received the entire volume of mixed-low-level waste (300,000 m³) that is either projected to be disposed at Waste Management Program disposal facilities (99,000 m³) or not-yet-constructed Environmental

Restoration Program CERCLA disposal facilities (35,000 m³), or is classified as *to be determined* (170,000 m³). The Hanford and Nevada Test Site facilities were selected for the mixed low-level waste alternative scenarios because they are approved to accept mixed waste and have enough potential expandable capacity to accommodate the entire 300,000 m³ volume of mixed low-level waste.

No waste projected to be disposed at commercial facilities was included in the additional waste volumes considered in the five alternative scenarios. The sum-of-fractions results are shown in Table 3-6 and discussed below.

Alternative Scenario	Disposal Facility/Site	Sum of Fractions
	Hanford Site	0.3
Low-Level Waste	Los Alamos National Laboratory	81
	Nevada Test Site	0.7
Mixed Low-Level	Hanford Site	0.3
Waste	Nevada Test Site	0.6

Table 3.6. Alternative Scenario Sum-of-Fractions Analysis for
Low-Level and Mixed Low-Level Waste Disposal

3.5.1 Alternative Scenarios for Low-Level Waste

Based on this analysis, both Hanford and the Nevada Test Site would be able to dispose of all of the alternative scenario low-level waste in addition to their current and projected inventory of waste without exceeding radiological limits. Los Alamos National Laboratory can accept much of the waste, although it is limited primarily in terms of the total combined inventory of Cs-137 and Sr-90. The facility-specific basis for these results are presented in the following sections. Appendix B presents the detailed sum-of-fractions results of the analyses, including the ratio of each radionuclide concentration to its site-specific limit.

3.5.1.1 Hanford Site 200 Area Low-Level Burial Ground

As discussed in Section 3.4.1, the sum-of fractions results for the Hanford 200 Area Low-Level Waste Burial Grounds is estimated to be 0.3 for the current and projected low-level waste projected to be generated and currently planned to be disposed at the 200 Area. No radionuclides contribute more than 0.1 to the sum-of-fractions value for the low-level waste. When the entire inventory of *to be determined* waste is added to this inventory, the sum-of-fractions value is still about 0.3, and there are still no radionuclides that contribute more than 0.1 to the sum-of-fractions value.

Based on the projected inventory used in this analysis and the current waste acceptance criteria, disposing of the alternative scenario low-level waste at this facility would not cause its radiological capacity to be exceeded.

3.5.1.2 Los Alamos National Laboratory Technical Area-54

As discussed in Section 3.4.3, the sum-of-fractions results for the Los Alamos National Laboratory low-level waste burial grounds at Technical Area-54 is estimated to be 0.3 for the low-level waste projected to be disposed at that facility. No radionuclides contribute more than 0.1 to the sum-of-fractions value for the low-level waste. When the entire inventory of alternative scenario low-level waste is added to the current and projected low-level waste for this facility, the sum-of-fractions value increases to 81. Major contributors to the sum-of-fractions value are Cs-137, which contributes 61, Sr-90, which contributes 15, and U-234, which contributes 1. Other radionuclides contributing more than 0.1 to the sum-of-fractions are Ra-226 and U-235 (0.8 each); Cl-36 (0.6); Ni-63 (0.3); U-238 and Nb-94 (0.2 each); and C-14 and H-3 (0.1 each).

These results indicate that all of the alternative scenario waste likely would not be able to be disposed of at the Los Alamos Technical Area-54 low-level waste burial grounds based on the radiological capacity of the facility. Waste streams with high concentrations of Cs-137, Sr-90 or U-234 would be of particular concern based on this analysis.

3.5.1.3 Nevada Test Site Areas 3 and 5

As discussed in Section 3.4.4, the sum-of-fractions results for the Nevada Test Site low-level waste burial grounds is estimated to be 0.6 for the low-level waste projected to be disposed at the Nevada Test Site. When the entire inventory of alternative scenario low-level waste is added to the current and projected low-level waste for this facility, the sum-of-fractions value increases to 0.7. Major contributors to the sum-of-fractions value are Cs-137 and Nb-94, each of which contributes 0.1.

Based on the projected inventory used in this analysis and the current waste acceptance criteria, disposing of the alternative scenario mixed low-level waste at this facility would not cause its radiological capacity to be exceeded.

3.5.2 Alternative Scenarios for Mixed Low-Level Waste

Based on this analysis, both Hanford and the Nevada Test Site would be able to dispose of all of the alternative scenario mixed low-level waste in addition to their current and projected inventory of waste without exceeding radiological limits. The facility-specific basis for these results are presented in the following sections. Appendix B presents the detailed sum-of-fractions results of the analyses, including the ratio of each radionuclide concentration to its site-specific limit.

3.5.2.1 Hanford Site

As discussed in Section 3.4.1, the sum-of fractions results for the Hanford 200 Area Low-Level Waste Burial Grounds is estimated to be 0.3 for the current and projected low-level waste to be generated and currently planned to be disposed at the 200 Area. No radionuclides contribute more than 0.1 to the sum-of-fractions value for the low-level waste. When the entire inventory of alternative scenario mixed low-level waste is added to this inventory, the sum-of-fractions value is still about 0.3. The only radionuclide contributing more than 0.1 to the sum-of-fractions value under the alternative scenario is Np-237, which contributes 0.2.

3.5.2.2 Nevada Test Site

As discussed in Section 3.4.4, the sum-of fractions results for the Nevada Test Site low-level waste disposal facilities is estimated to be 0.6 for the current and projected low-level waste to be generated and currently planned to be disposed at the 200 Area. Radionuclides contributing at least 0.1 to the sum-of-fractions value are Cs-137, which contributes 0.2, and Ra-226, which contributes 0.1. When the entire inventory of alternative scenario mixed low-level waste is added to this inventory, the sum-of-fractions value is still about 0.6. Radionuclides contributing at least 0.1 to the sum-of-fractions value for the alternative case are Cs-137 and Pu-239, each of which contribute 0.1.

Based on the projected inventory used in this analysis and the current waste acceptance criteria, disposing of the alternative scenario mixed low-level waste at this facility would not cause its radiological capacity to be exceeded.

4.0 SUMMARY AND CONCLUSIONS

4.1 Summary

The Department's current strategy for disposition of the projected 8.1 million m³ of low-level waste and 710,000 m³ of mixed low-level waste from 1998 to 2070 is outlined as follows:

- Approximately 1.5 million m³ of low-level waste and 100,000 m³ of mixed low-level waste will be disposed in Waste Management Program disposal facilities.
- Approximately 5.4 million m³ of low-level waste and over 400 m³ of mixed low-level waste generated by environmental restoration activities will be disposed in existing Environmental Restoration Program disposal facilities approved under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA).
- Approximately 15,000 m³ of low-level waste and over 330,000 m³ of mixed low-level waste generated by environmental restoration activities will be disposed in CERCLA remediation units.
- Approximately 390,000 m³ of low-level waste and over 35,000 m³ of mixed low-level waste generated by environmental restoration activities will be disposed in CERCLA disposal facilities that have not yet been constructed.
- Nearly 510,000 m³ of low-level waste and 78,000 m³ of mixed low-level waste will be disposed in commercial facilities.
- Approximately 330,000 m³ of low-level waste and 170,000 m³ mixed low-level waste will be disposed in facilities yet *to be determined*.

Between 1988 and 1997, the Department disposed of 670,000 m³ of low-level waste in its existing Waste Management Program disposal facilities. To accommodate disposal of the projected waste, the Department has existing and planned disposal capacity in Waste Management Program disposal facilities for 5.8 million m³ of low-level waste and 160,000 m³ of mixed low-level waste. The existing and planned capacity in the Environmental Restoration Program CERCLA disposal facilities is 5.7 million m³ for low-level and mixed low-level waste. In addition, the Department is expecting to develop additional Environmental Restoration Program CERCLA disposal facilities and use CERCLA remediation units for disposal of selected low-level and mixed low-level waste streams. Tables 4-1 and 4-2 summarize the Department's site-specific volumetric and radiological capacity to manage low-level and mixed low-level waste through 2070.

Program	Site	Disposal Facility	Estimated Capacity (m ³)	Past & Projected Waste Disposed (m ³) (Pre-1988 -2070)	Radiological Capacity Sum of Fractions
	Hanford Site	200 Area Low-Level Waste Burial Grounds	2,000,000	520,000	0.3
	Idaho National Engineering and Environmental Laboratory	Radioactive Waste Management Complex	97,000	50,000	0.8
Waste	Los Alamos National Laboratory	Technical Area - 54	225,000	750,000	0.3
waste Management Program	Nevada Test Site	Area 3 and 5 Radioactive Waste Management Sites	3,150,000	670,000	0.6
	Oak Ridge Reservation	Solid Waste Storage Area - 6, Interim Waste Management Facility	5,000	3,300	1.0
		Low Activity Waste Vaults	110,000	27,000	0.8
	Savannah River Site	Intermediate Level Vaults	7,300	3,600	2.7
		Slit Trenches	290,000	130,000	1.0
	Subtotal Waste Manageme	ent Program	5,850,000	2,200,000	N/A
	Fernald Environmental Management Project	On-Site Disposal Facility	1,800,000	1,600,000	N/A ^a
	Hanford Site	Environmental Restoration Disposal Facility	3,900,000	3,800,000	N/A ^a
Environmental Restoration	Idaho National Engineering	Not-yet-constructed CERCLA disposal facility	Not determined	330,000	N/A ^a
Program	and Environmental Laboratory	Remediation Units	Not determined	15,000	N/A ^a
	Oak Ridge Reservation Not-yet-constructed CERCLA disposal facility		Not determined	60,000	N/A ^a
	Subtotal Environmental R	estoration Program	5,700,000	5,800,000	N/A
N/A	To Be Determined	N/A	330,000	N/A	
	TOTAL		11,550,000	8,300,000	N/A

Table 4-1.	Volumetric and	Radiological	Canacity for	r Disposal o	f Low-Level Waste
	volumente ana	Mautological	Cupacity 101		

 ^a Sum-of-fractions values are not calculated for Environmental Restoration Program disposal facilities.
 ^b Both low-level and mixed-low-level waste can be disposed in the Hanford Environmental Restoration Disposal Facility. The capacity shown for this facility is the total facility capacity, some of which is used for mixed low-level waste disposal.

^c This total does not reflect additional capacity of the not-yet constructed facilities or remediation units or the reduction in capacity associated with disposal of low-level waste at the Hanford Environmental Restoration Disposal Facility.

Note: Because of rounding, some totals may not equal the sum of their components.

Program	Site	Disposal Facility	Estimated Capacity (m ³)	Past & Projected Waste Disposed (m ³) (Pre-1988 -2070)	Radiological Capacity Sum of Fractions
Waste Management Program	Hanford	Radioactive Mixed Waste Trenches 31 and 34	42,000	99,000	0.3 ª
	Nevada Test Site	Mixed Waste Disposal Unit	120,000	22	0.6 ^a
	Subtotal Waste Manageme	160,000	100,000	N/A	
Environmental Restoration Program	Hanford	Environmental Restoration Disposal Facility	3,900,000 °	400	N/A ^b
	Idaho National Engineering and Environmental Laboratory	Not-yet-constructed CERCLA disposal facility	Not determined	5,900	N/A ^b
		Remediation Units	Not determined	330,000	N/A ^b
	Oak Ridge Reservation	Not-yet-constructed CERCLA disposal facility	Not determined	29,000	N/A ^b
	Subtotal Environmental R	3,900,000 ^d	370,000	N/A	
N/A	To Be Determined		N/A	170,000	N/A
	TOTAL		4,100,000 d	630,000	N/A

Table 4-2. Volumetric and Radiological Capacity for Disposal of Mixed Low-Level Waste

^a Sum-of-fractions values shown for the two Waste Management Program facilities represent the radiological inventory of DOE mixed low-level waste either projected to be disposed in the Waste Management facilities or not-yet-constructed CERCLA disposal facilities or classified as *to be determined*, combined with the Base Case volume of low-level waste projected to be disposed at these two Waste Management Program facilities.

^b Sum-of-fractions values are not calculated for Environmental Restoration Program disposal facilities.

^c Both low-level and mixed-low-level waste can be disposed in the Hanford Environmental Restoration Disposal Facility. The capacity shown for this facility is the total facility capacity, some of which is used for low-level waste disposal.

^d This total does not reflect additional capacity of the not-yet constructed facilities or remediation units or the reduction in capacity associated with disposal of low-level waste at the Hanford Environmental Restoration Disposal Facility.

Note: Because of rounding, some totals may not equal the sum of their components.

The Department has sufficient complex-wide volumetric capacity to dispose of projected lowlevel wastes through 2070. Based on current capacity, the Los Alamos National Laboratory Technical Area-54 disposal facility does not appear to have adequate volumetric capacity to dispose of all of the low-level waste projected to be generated and currently planned to be disposed at Technical Area-54. However, Los Alamos National Laboratory is currently preparing an environmental impact statement that addresses the development of additional disposal capacity at Area-54. There is available space for sufficient additional capacity pending results of the environmental impact statement. The complex-wide radiological capacity through 2070 for lowlevel waste appears to be adequate. Based on this analysis, however, the Savannah River Site Intermediate Level Vault requires further analysis to determine whether the Department's disposal projections for that facility would result in that facility's radiological limits being exceeded.

The Department also has sufficient complex-wide volumetric and radiological capacity to dispose of mixed low-level waste projected to be disposed at specific facilities through 2070, assuming that as needed expansions occur following issuance of records of decision under the Department's *Waste Management Programmatic Environmental Impact Statement*.

4.2 Conclusions

As a result of the analyses performed in this Report, which are based on a snapshot of current Department waste projections and capacity information, the following conclusions can be drawn:

1. The Department has sufficient complex-wide volumetric capacity for low-level waste disposal through 2070. The radiological capacity through 2070 for low-level waste disposal also appears to be sufficient.

All of the Department's low-level waste disposal facilities have adequate volumetric capacity to accept current and planned disposal of the Department's low-level waste through 2070, except at Los Alamos National Laboratory Technical Area-54. Los Alamos National Laboratory is preparing an environmental impact statement that addresses the development of additional disposal capacity at Area-54. There is available space for sufficient additional capacity pending results of the environmental impact statement. Additionally, other DOE disposal facilities appear to have significant volumetric disposal capacity surpluses.

Radiological capacity appears to be sufficient for disposal of the Department's low-level waste at all facilities except the Savannah River Site Intermediate Level Vault. However, given the conservatism of this analysis and uncertainties associated with the manner by which radiological data was extrapolated, it cannot be concluded that the Savannah River Site Intermediate Level Vaults would not be able to dispose of the waste expected to be disposed by the site. To address this issue, the Department should more closely evaluate both the radionuclide profiles of the waste projected to be disposed at the facility and the disposal limits of the facility to determine whether the capacity is likely to be exceeded under the Department's current disposal projections. If it appears the capacity would be exceeded, actions can be taken to redirect the waste to another disposal facility, or modify the facility so that the additional radioactivity can be accommodated. Other disposal sites also appear to have significant radiological disposal capacity surpluses.

2. The Department has sufficient complex-wide volumetric and radiological capacity for mixed low-level waste disposal through 2070. However, a decision has yet to be made regarding use of the two mixed low-level waste disposal facilities.

The Department has two mixed low-level waste disposal facilities: Hanford Radioactive Mixed Waste Trenches 31 and 34 and Nevada Test Site Mixed Waste Disposal Unit. These two facilities provide the Department a total disposal capacity of 160,000 m³ and include room for further expansion. The Department has projected that 100,000 m³ of mixed low-level waste will be disposed at these two facilities through 2070. Therefore, it appears there is sufficient complexwide volumetric capacity to dispose of the projected mixed low-level waste. However, there are currently limits at the facilities which affect their available site-specific capacity. At the Hanford Radioactive Mixed Waste Land Disposal Facility, the existing capacity (42,000 m³) is too small to accommodate all of the mixed low-level waste currently projected to be disposed there (99,000 m³) without expansion of the disposal cells. The Nevada Test Site Mixed Waste Disposal Unit appears to be large enough to accommodate all mixed low-level waste currently projected for

disposal there (less than 1 m³). However, use of the excess capacity is limited because this facility is currently only allowed to accept mixed low-level waste generated within the State of Nevada. Both sites also possess available space to accommodate expansion such that either site could provide sufficient disposal capacity.

3. Site-specific Composite Analyses have the potential to impact the conclusions of this Report.

An important purpose of this Report is to assess low-level waste disposal capacity from a radiological perspective. The analyses and conclusions of the Report are based on DOE radiological performance objectives for low-level waste disposal facilities as contained in DOE Order 5820.2A. A composite analysis assessing all radiological sources (e.g., pre-1988 waste disposal and areas of radiological contamination) at individual sites has not been addressed in this analysis. It would therefore be appropriate in a future revision of this Report to analyze the capacity of each low-level waste disposal facility while taking into account the effect on capacity resulting from other radiological sources at a site. The conclusions of such an analysis may be different than that presented in this Report.

4. Development of additional Environmental Restoration Program CERCLA disposal facilities may affect the available disposal capacity at existing Waste Management Program low-level and mixed low-level disposal facilities.

The Environmental Restoration Program expects to construct CERCLA disposal facilities at Idaho National Engineering and Environmental Laboratory and Oak Ridge Reservation. Additional facilities at other sites also may be needed. The potential effect that not constructing these facilities could have on disposal capacity was assessed in the alternative scenarios presented in this Report. Developing these facilities would allow more flexibility in using the remaining available capacity at existing Waste Management Program facilities.

5. The Department should make efforts to improve data quality and reduce uncertainties.

The Department's confidence in data quality will be improved during future versions of this Report. The uncertainty of many of the waste stream radionuclide profiles used in this Report can be reduced in those cases where the profiles are estimates based on composited, incomplete, and extrapolated radionuclide data. Uncertainty also can be reduced in developing improved volumetric projections. Additionally, uncertainty can be reduced by an improved understanding of disposal facility performance assessment attributes.